The Flow Cytometry Facility (FCF) is a Shared Resource that provides Cancer Center investigators access to high quality, cost effective flow cytometry services and technology. By providing these services and the scientific expertise necessary to effectively use this technology, the facility serves to enhance the scope and quality of cancer research performed at the University. With state of the art instrumentation, the facility offers high speed 4 way cell sorting and cloning, complex multicolor analytical services, multiplexing assays for soluble analytes, and imaging flow cytometry. This instrumentation is compatible with a wide variety of flow cytometric applications such as subpopulation identification/quantification, molecular detection (using labeled antibodies or other ligands or fluorescent protein reporter molecules), measurement of DNA and RNA content for cell cycle analysis, apoptosis, transcriptional activity, intracellular ion concentration (e.g. Ca++), cell viability, membrane potential, microarrays, and bead based immunoassays. In addition to the instrumentation, the highly experienced staff of the FCF provides consultation in experimental design, sample preparation and data analysis. Researchers have the option, once trained, of performing their own analysis or utilizing the expertise of the facility's staff to run their samples for them. Specialized training classes are offered for those researchers who wish to better understand the principles and techniques employed in this technology and prefer to directly acquire and/or analyze their own samples. The services and expertise offered by the FCF play a key role in the study of many types of cancer, especially hematological malignancies, as well as immune responses to cancers.

Public Health Relevance

Flow cytometry is a mainstay of research on the immune system, and has now broadened its utility to all aspects of cancer research where analysis of single cells is important. As we learn more about the heterogeneity of tumors, this becomes increasingly critical for modern cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-23
Application #
8635294
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
23
Fiscal Year
2014
Total Cost
$44,556
Indirect Cost
$19,017
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Heuslein, Joshua L; Murrell, Kelsey P; Leiphart, Ryan J et al. (2016) Vascular growth responses to chronic arterial occlusion are unaffected by myeloid specific focal adhesion kinase (FAK) deletion. Sci Rep 6:27029
Ma, Zhenjun; Kim, Youngchul; Hu, Feifang et al. (2016) Point success rate for patient therapeutic response prediction by continuous biomarker scores. Stat Methods Med Res 25:1638-47
Mauldin, Ileana S; Wages, Nolan A; Stowman, Anne M et al. (2016) Topical treatment of melanoma metastases with imiquimod, plus administration of a cancer vaccine, promotes immune signatures in the metastases. Cancer Immunol Immunother 65:1201-12
Pelkofski, Elizabeth; Stine, Jessica; Wages, Nolan A et al. (2016) Cervical Cancer in Women Aged 35 Years and Younger. Clin Ther 38:459-66
Showalter, Timothy N; Camacho, Fabian; Cantrell, Leigh A et al. (2016) Determinants of Quality Care and Mortality for Patients With Locally Advanced Cervical Cancer in Virginia. Medicine (Baltimore) 95:e2913
Mauldin, Ileana S; Wages, Nolan A; Stowman, Anne M et al. (2016) Intratumoral interferon-gamma increases chemokine production but fails to increase T cell infiltration of human melanoma metastases. Cancer Immunol Immunother 65:1189-99
Cross, A M; Wilson, A L; Guerrero, M S et al. (2016) Breast cancer antiestrogen resistance 3-p130(Cas) interactions promote adhesion disassembly and invasion in breast cancer cells. Oncogene 35:5850-5859
Kolpaczynska, Milena; DeRosa, Christopher A; Morris, William A et al. (2016) Thienyl Difluoroboron β-Diketonates in Solution and Polylactide Media. Aust J Chem 69:537-545
Sloane, Hillary S; Landers, James P; Kelly, Kimberly A (2016) Hybridization-Induced Aggregation Technology for Practical Clinical Testing: KRAS Mutation Detection in Lung and Colorectal Tumors. J Mol Diagn 18:546-53
Cheng, Bei; He, Huacheng; Huang, Tao et al. (2016) Gold Nanosphere Gated Mesoporous Silica Nanoparticle Responsive to Near-Infrared Light and Redox Potential as a Theranostic Platform for Cancer Therapy. J Biomed Nanotechnol 12:435-49

Showing the most recent 10 out of 413 publications