MOLECULAR GENETICS AND EPIGENETICS PROGRAM (GEN) ? ABSTRACT The accumulation of heritable genetic and epigenetic changes that result in loss of function of tumor suppressors and/or inappropriate activation of proto-oncogenes is a hallmark of cancer. The goals of the Molecular Genetics and Epigenetics Program (GEN) are to understand the molecular mechanisms that underlie these defects and to uncover new targets for therapy, diagnosis, prognosis, and prevention. The Program capitalizes on the large number of outstanding investigators at UVA with research expertise in chromatin architecture, transcription, replication, mutation, repair, genomics and cellular checkpoints in cancer. The Members are organized around three main themes: (1) Chromosome function, malfunction, and cellular checkpoints; (2) Gene expression and epigenetics and cancer; (3) noncoding RNAs in cancer. The Program is led by James L. Larner, MD, PhD, chair of Radiation Oncology and an expert in DNA damage responses to radiation; and by P. Todd Stukenberg, PhD a leader in the mitosis and cell cycle fields. Through its activities, GEN provides a formal mechanism for fostering intellectual exchange and collaboration among its Members. The Program currently consists of 25 Full Members and 6 Associate Members from 11 different departments. Ten of these individuals are new to the Program or to UVA since the last renewal, and they bring considerable expertise in the bioinformatics of microarray and deep-sequencing data, large-scale genomic rearrangements (including aneuploidy), and the molecular effects of radiation and cellular responses to radiation. GEN has added a significant cohort of translational and clinical investigators whose research focus is on particular tumor types, including lung and brain tumors, or on radiation damage. Total extramural funding for the Program exceeds $8.3M, including $4.1 million from the National Cancer Institute (NCI) and over $3.1M from other NIH institutes. GEN is composed of highly productive and collaborative members with 373 total publications in the last grant period and of these 22% are intra-programmatic and 29% are inter-programmatic with other UVA Cancer Center Programs.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-27
Application #
9420545
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-02-01
Budget End
2019-01-31
Support Year
27
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Borten, Michael A; Bajikar, Sameer S; Sasaki, Nobuo et al. (2018) Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Sci Rep 8:5319
Olson, Kristine C; Kulling Larkin, Paige M; Signorelli, Rossana et al. (2018) Vitamin D pathway activation selectively deactivates signal transducer and activator of transcription (STAT) proteins and inflammatory cytokine production in natural killer leukemic large granular lymphocytes. Cytokine 111:551-562
Pfister, Katherine; Pipka, Justyna L; Chiang, Colby et al. (2018) Identification of Drivers of Aneuploidy in Breast Tumors. Cell Rep 23:2758-2769
Carhart, Miev Y; Schminkey, Donna L; Mitchell, Emma M et al. (2018) Barriers and Facilitators to Improving Virginia's HPV Vaccination Rate: A Stakeholder Analysis With Implications for Pediatric Nurses. J Pediatr Nurs 42:1-8
Hao, Yi; Bjerke, Glen A; Pietrzak, Karolina et al. (2018) TGF? signaling limits lineage plasticity in prostate cancer. PLoS Genet 14:e1007409
Obeid, Joseph M; Kunk, Paul R; Zaydfudim, Victor M et al. (2018) Immunotherapy for hepatocellular carcinoma patients: is it ready for prime time? Cancer Immunol Immunother 67:161-174
Wallrabe, Horst; Svindrych, Zdenek; Alam, Shagufta R et al. (2018) Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM. Sci Rep 8:79
Olmez, Inan; Love, Shawn; Xiao, Aizhen et al. (2018) Targeting the mesenchymal subtype in glioblastoma and other cancers via inhibition of diacylglycerol kinase alpha. Neuro Oncol 20:192-202
Wang, T Tiffany; Yang, Jun; Zhang, Yong et al. (2018) IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective ?-chain cytokines, decreases leukemic T-cell viability. Leukemia :
Yao, Nengliang; Zhu, Xi; Dow, Alan et al. (2018) An exploratory study of networks constructed using access data from an electronic health record. J Interprof Care :1-8

Showing the most recent 10 out of 539 publications