The Animal Model of Disease Core (AMDC) is a comprehensive shared resource that has served UVA Cancer Center researchers' needs for more than two decades. Mice are one of the most widely used animal models for cancer. While cancer researchers have successfully studied the molecular and cellular properties of cancer cells propagated in culture, increasingly mouse models of cancer provide a more physiologically relevant opportunity to investigate the interplay of cancer cells, the tumor microenvironment, and the host immune system. Mouse models provide opportunities to study the evolution of cancer progression from first mutations to metastasis, and the unique opportunity to assess the genetic and epigenetic events correlated with acquisition of drug resistance. Following guidance from the UVACC leadership, the AMDC was formed by integrating two pre-existing shared resources: the Genetically Engineered Murine Model (GEMM) Core, and the Preclinical Tumor Assessment and Imaging Core, which consisted of the Tumor Xenograft Model (TXM) and Molecular Imagining Core (MIC) sections. This merger was conducted with the goal of better integrating cancer animal model creation, analysis and imaging. The AMDC integrates genome engineering, tumor xenografting, and imaging technologies to efficiently produce and analyze cancer animal models for UVA Cancer Center investigators. Since the last CCSG renewal, the AMDC has made great strides in novel technology development and state- of-art instrument acquisition. The AMDC swiftly adopted the Crispr-Cas9 technology for genome editing which enables cancer animal model generation at an unprecedented speed with significantly lowered cost. The AMDC also greatly expanded their library of patient derived xenograft (PDX) tumor models of ovarian cancer, head and neck cancers, and prostate and kidney GU cancers. The ultimate goal of these PDX efforts is to generate several lines of highly clinically relevant cancer models to be made widely available to the UVA community of cancer investigators. The AMDC has upgraded its PET imaging program with the addition of a cyclotron, which was funded by an NIH-NCRR high end instrument grant. In 2011, the cyclotron was installed in the Life Sciences Annex (built with funds from UVA SOM) adjoining the Snyder Building in the Fontaine Research Park. The AMDC is administered under ORCA, led by Dr. Jay W. Fox, the UVA Cancer Center Associate Director for Laboratory Infrastructure. AMDC staff routinely interact with other Cancer Center shared resources in particular the Biomolecular Analysis Facility, Biostatistics, Advanced Microscopy Facility, and Biorepository and Tissue Research Facilities. The interactions with other shared resource facilities on behalf of AMDC users help make the AMDC a one-stop service provider. Many of the AMDC users are UVA Cancer Center members who benefit from a co-pay that reduces their charges. The AMDC also is supported by the School of Medicine, which further lowers the cost for the Cancer Center users. The AMDC is reviewed annually by the Cancer Center leadership and the School of Medicine Research Advisory Committee to determine the level of subsidy required to maintain a revenue neutral core. The AMDC is competitive in pricing, rapid in service turnout time, and provides guarantees matching or exceeding the standards set up by comparative shared resources around the country.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA044579-28
Application #
9626875
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-02-01
Budget End
2020-01-31
Support Year
28
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Melhuish, Tiffany A; Kowalczyk, Izabela; Manukyan, Arkadi et al. (2018) Myt1 and Myt1l transcription factors limit proliferation in GBM cells by repressing YAP1 expression. Biochim Biophys Acta Gene Regul Mech 1861:983-995
Stowman, Anne M; Hickman, Alexandra W; Mauldin, Ileana S et al. (2018) Lymphoid aggregates in desmoplastic melanoma have features of tertiary lymphoid structures. Melanoma Res 28:237-245
Kulling, Paige M; Olson, Kristine C; Olson, Thomas L et al. (2018) Calcitriol-mediated reduction in IFN-? output in T cell large granular lymphocytic leukemia requires vitamin D receptor upregulation. J Steroid Biochem Mol Biol 177:140-148
Carlton, Anne L; Illendula, Anuradha; Gao, Yan et al. (2018) Small molecule inhibition of the CBF?/RUNX interaction decreases ovarian cancer growth and migration through alterations in genes related to epithelial-to-mesenchymal transition. Gynecol Oncol 149:350-360
Borten, Michael A; Bajikar, Sameer S; Sasaki, Nobuo et al. (2018) Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Sci Rep 8:5319
Olson, Kristine C; Kulling Larkin, Paige M; Signorelli, Rossana et al. (2018) Vitamin D pathway activation selectively deactivates signal transducer and activator of transcription (STAT) proteins and inflammatory cytokine production in natural killer leukemic large granular lymphocytes. Cytokine 111:551-562
Pfister, Katherine; Pipka, Justyna L; Chiang, Colby et al. (2018) Identification of Drivers of Aneuploidy in Breast Tumors. Cell Rep 23:2758-2769
Carhart, Miev Y; Schminkey, Donna L; Mitchell, Emma M et al. (2018) Barriers and Facilitators to Improving Virginia's HPV Vaccination Rate: A Stakeholder Analysis With Implications for Pediatric Nurses. J Pediatr Nurs 42:1-8
Hao, Yi; Bjerke, Glen A; Pietrzak, Karolina et al. (2018) TGF? signaling limits lineage plasticity in prostate cancer. PLoS Genet 14:e1007409
Obeid, Joseph M; Kunk, Paul R; Zaydfudim, Victor M et al. (2018) Immunotherapy for hepatocellular carcinoma patients: is it ready for prime time? Cancer Immunol Immunother 67:161-174

Showing the most recent 10 out of 539 publications