Since its inception in 1984, the goal of the CSHL FACS Shared Resource has been to give Cancer Center members access to state-of-the-art flow cytometry equipment and support. The Resource has evolved with emerging technologies and changing research needs. In 1984, the primary use was separation of cells by DNA content or by expressed cell-surface antigens. The advent of fluorescent markers (such as the green fluorescent protein GFP) ushered in a new phase in FACS usage, as Cancer Center members used GFP to track transfected cells, and to isolate particular populations of cells from complex mixtures. Increases in the speed and efficiency of sorting by FACS have enabled completion of experiments that once would have been impossible or impractical?such as the isolation of large quantities of tumor or stem cells for genomic and genetic analyses. The recent introduction of the new generation of proteins that fluoresce in various colors and are less toxic than their predecessors, changed the requirements for flow cytometers and increased the demand for the Resource. In response to these demands, the FACS Shared Resource has undergone an extensive series of changes?in location, instrumentation, and personnel?designed to expand FACS capabilities at CSHL, and improve the efficiency and reliability of flow cytometry for Cancer Center members.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cold Spring Harbor Laboratory
Cold Spring Harbor
United States
Zip Code
Chaudhary, Fauzia; Lucito, Robert; Tonks, Nicholas K (2015) Missing-in-Metastasis regulates cell motility and invasion via PTP?-mediated changes in SRC activity. Biochem J 465:89-101
Fan, Gaofeng; Wrzeszczynski, Kazimierz O; Fu, Cexiong et al. (2015) A quantitative proteomics-based signature of platinum sensitivity in ovarian cancer cell lines. Biochem J 465:433-42
Streppel, M M; Lata, S; DelaBastide, M et al. (2014) Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett's esophagus. Oncogene 33:347-57
Jensen, Mads A; Wilkinson, John E; Krainer, Adrian R (2014) Splicing factor SRSF6 promotes hyperplasia of sensitized skin. Nat Struct Mol Biol 21:189-97
Chio, Iok In Christine; Yordanov, Georgi; Tuveson, David (2014) MAX-ing out MYC: a novel small molecule inhibitor against MYC-dependent tumors. J Natl Cancer Inst 106:
Eckersley-Maslin, MĂ©lanie A; Thybert, David; Bergmann, Jan H et al. (2014) Random monoallelic gene expression increases upon embryonic stem cell differentiation. Dev Cell 28:351-65
Schwertassek, Ulla; Haque, Aftabul; Krishnan, Navasona et al. (2014) Reactivation of oxidized PTP1B and PTEN by thioredoxin 1. FEBS J 281:3545-58
Yang, Ming; Haase, Astrid D; Huang, Fang-Ke et al. (2014) Dephosphorylation of tyrosine 393 in argonaute 2 by protein tyrosine phosphatase 1B regulates gene silencing in oncogenic RAS-induced senescence. Mol Cell 55:782-90
Bergmann, Jan H; Spector, David L (2014) Long non-coding RNAs: modulators of nuclear structure and function. Curr Opin Cell Biol 26:10-8
Miething, Cornelius; Scuoppo, Claudio; Bosbach, Benedikt et al. (2014) PTEN action in leukaemia dictated by the tissue microenvironment. Nature 510:402-6

Showing the most recent 10 out of 120 publications