The Cold Spring Harbor Laboratory (CSHL) Cancer Center (www.cshl.edu/cancercenter) is a vibrant and dynamic cancer research center that strives for excellence. Researchers are committed to using a focused, multidisciplinary and collaborative approach to investigate the molecular cellular basis of human cancer with the goal of improving diagnosis and treatment of ail major forms ofthe disease. The CSHL Cancer Center is organized into three Scientific Programs. The Gene Expression &Cell Proliferation Program focuses on the regulation of gene expression, cell division cycle control and chromosome structure, comparing normal and cancer cells with a goal to identify new therapeutic targets. The Signal Transduction Program focuses on signal transduction pathways and cell architecture in normal and cancer cells, with a growing emphasis on tumor micro-environment and understanding mechanisms of resistance to targeted therapies. The Cancer Genetics Program focuses on understanding the genetic basis of cancer, tumor progression and discovery of new targets for therapy using innovative mouse models for human cancer. In addition, the CSHL Cancer Center supports ten scientific shared resources. These shared resources provide access to technologies, products, services and expertise that promote multidisciplinary interactions and collaborations among CSHL researchers and programs. Importantly, the shared resources increase productivity, provide economies of scale, decrease wasteful duplication of resources, maintain quality control, and facilitate access to expensive equipment and highly skilled technical services. In the last five years, the CSHL Cancer Center not only broke new ground in understanding cancer genetics and tumor biology, but also achieved its vision of a cancer discovery pipeline that integrates complex cellular processes and pathways in tumor cells with cell biology and biochemistry, human cancer genetics, RNAi technology and innovative animal models that mimic different subsets of human cancers. The pipeline has generated a wealth of pre-clinical data including information on new cancer genes and diagnostic tools, has identified potential new therapeutic targets, has investigated new biochemical pathways, and studied drug resistance mechanisms.

Public Health Relevance

Despite the discovery of targeted therapies that cure or control some cancer types, cancer remains one of the major causes of death in the US. The focus of the Cold Spring Harbor Laboratory Cancer Center is to understand the underlying genetic and cellular basis for the disease and to discover new, targeted and safe cancer therapies that are linked to the patient's tumor genetics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA045508-27S1
Application #
8917515
Study Section
Subcommittee G - Education (NCI)
Program Officer
Marino, Michael A
Project Start
1997-08-01
Project End
2016-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
27
Fiscal Year
2014
Total Cost
$384,000
Indirect Cost
$184,000
Name
Cold Spring Harbor Laboratory
Department
Type
DUNS #
065968786
City
Cold Spring Harbor
State
NY
Country
United States
Zip Code
11724
Chaudhary, Fauzia; Lucito, Robert; Tonks, Nicholas K (2015) Missing-in-Metastasis regulates cell motility and invasion via PTP?-mediated changes in SRC activity. Biochem J 465:89-101
Fan, Gaofeng; Wrzeszczynski, Kazimierz O; Fu, Cexiong et al. (2015) A quantitative proteomics-based signature of platinum sensitivity in ovarian cancer cell lines. Biochem J 465:433-42
Streppel, M M; Lata, S; DelaBastide, M et al. (2014) Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett's esophagus. Oncogene 33:347-57
Jensen, Mads A; Wilkinson, John E; Krainer, Adrian R (2014) Splicing factor SRSF6 promotes hyperplasia of sensitized skin. Nat Struct Mol Biol 21:189-97
Chio, Iok In Christine; Yordanov, Georgi; Tuveson, David (2014) MAX-ing out MYC: a novel small molecule inhibitor against MYC-dependent tumors. J Natl Cancer Inst 106:
Eckersley-Maslin, MĂ©lanie A; Thybert, David; Bergmann, Jan H et al. (2014) Random monoallelic gene expression increases upon embryonic stem cell differentiation. Dev Cell 28:351-65
Schwertassek, Ulla; Haque, Aftabul; Krishnan, Navasona et al. (2014) Reactivation of oxidized PTP1B and PTEN by thioredoxin 1. FEBS J 281:3545-58
Yang, Ming; Haase, Astrid D; Huang, Fang-Ke et al. (2014) Dephosphorylation of tyrosine 393 in argonaute 2 by protein tyrosine phosphatase 1B regulates gene silencing in oncogenic RAS-induced senescence. Mol Cell 55:782-90
Bergmann, Jan H; Spector, David L (2014) Long non-coding RNAs: modulators of nuclear structure and function. Curr Opin Cell Biol 26:10-8
Miething, Cornelius; Scuoppo, Claudio; Bosbach, Benedikt et al. (2014) PTEN action in leukaemia dictated by the tissue microenvironment. Nature 510:402-6

Showing the most recent 10 out of 120 publications