The Molecular Imaging Program (MIP) consists of 19 members from 7 different departments. Since the last funding cycle the research base of the Program increased 46% from $5,740,595 total annual direct research support, of which $6,393,909 Is from the NCI. Over this last grant period, there were 188 publications of the Molecular Imaging Program, of which 28,7% were intra-programmatic and 36,7% were inter-programmatic. The program has made significant advances in developing novel technologies that facilitate diagnosis and treatment of cancer, and also has provided methodologies and reagents wherein the efficacy of various therapeutics can be monitored in real-time in pre-clinical and clinical settings. These advances include the development of novel molecular Imaging reporter molecules which have Improved our understanding of cancer etiology, biology, pathophysiology and therapy. We will continue to develop cutting edge approaches for imaging the presence of pre-malignant (dysplastic) tissue and oncogenic signaling molecules in vivo. We have developed an Integrated optical molecular Imaging strategy that uses fluorescence peptides as probes to target the presence of pre-malignant (dysplastic) tissue in vivo. The recruitment of Thomas Wang MD, PhD from Stanford University provides the MIP with new capabilities, especially the development of novel optical Imaging probes and instrumentation that can be used as a diagnostic cancer screen for early detection in variousorgans. Drs Ross, Rehemtulla and Luker will continue to develop and validate molecular imaging reporters (i.e. CXCR, c-Met and Akt), Non-invasive imaging in cells and animals will be used to evaluate these novel reporter constructs for detection of key oncogenic signaling pathways. These tools and concepts should significantly aid in our preclinical drug development process and provide insights into more efficacious combination therapy strategies for tumors. Drs Ross, Meyer and Chenevert will continue to develop novel MR-imaging based surrogates for quantification of early therapeutic efficacy in cancer patients. Recent breakthroughs in this area include the concept that analysis of changes within individual voxels (parametric response mapping, PRM) over time, provide a much more robust and predictive quantitative measure of treatment response than current approaches. Application of the PRM concept to clinical trials in brain, breast, head and neck as well as in prostate cancer metastatic to bone, have yielded results that demonstrate the early predictive power of MR-imaging especially when combined with PRM analysis.

Public Health Relevance

A wide variety of molecular imaging techniques are under active investigation &have great potential to noninvasively provide never before available quantitative information re: physiologic and biological properties of tumors at the molecular and systemic levels unavailable from routine structural Imaging techniques alone. These techniques enhance the efficiency of cancer diagnosis, treatment as well as oncologic research. The ability to assess tumor response to therapy positively impacts those with cancer as will recent developments in early detection and staging.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Ann Arbor
United States
Zip Code
Verhaegen, Monique E; Mangelberger, Doris; Harms, Paul W et al. (2015) Merkel cell polyomavirus small T antigen is oncogenic in transgenic mice. J Invest Dermatol 135:1415-24
Chinn, Steven B; Darr, Owen A; Owen, John H et al. (2015) Cancer stem cells: mediators of tumorigenesis and metastasis in head and neck squamous cell carcinoma. Head Neck 37:317-26
Vainshtein, Jeffrey M; Spector, Matthew E; Stenmark, Matthew H et al. (2014) Reliability of post-chemoradiotherapy F-18-FDG PET/CT for prediction of locoregional failure in human papillomavirus-associated oropharyngeal cancer. Oral Oncol 50:234-9
Castro, Maria G; Candolfi, Marianela; Wilson, Thomas J et al. (2014) Adenoviral vector-mediated gene therapy for gliomas: coming of age. Expert Opin Biol Ther 14:1241-57
Vainshtein, Jeffrey M; Spector, Matthew E; McHugh, Jonathan B et al. (2014) Refining risk stratification for locoregional failure after chemoradiotherapy in human papillomavirus-associated oropharyngeal cancer. Oral Oncol 50:513-9
Grogan, Patrick T; Sarkaria, Jann N; Timmermann, Barbara N et al. (2014) Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest New Drugs 32:604-17
VanderVeen, Nathan; Paran, Christopher; Appelhans, Ashley et al. (2014) Marmosets as a preclinical model for testing "off-label" use of doxycycline to turn on Flt3L expression from high-capacity adenovirus vectors. Mol Ther Methods Clin Dev 1:
Krook, Melanie A; Nicholls, Lauren A; Scannell, Christopher A et al. (2014) Stress-induced CXCR4 promotes migration and invasion of ewing sarcoma. Mol Cancer Res 12:953-64
Ro, Seung-Hyun; Semple, Ian A; Park, Haewon et al. (2014) Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1. FEBS J 281:3816-27
Stenmark, Matthew H; McHugh, Jonathan B; Schipper, Matthew et al. (2014) Nonendemic HPV-positive nasopharyngeal carcinoma: association with poor prognosis. Int J Radiat Oncol Biol Phys 88:580-8

Showing the most recent 10 out of 862 publications