The UMCCC High-Throughput Screening (HTS) Core is a new core which offers center investigators the opportunity to translate hypothesis-driven research into clinically relevant discoveries. In general these efforts focus on dissecting the cellular and molecular mechanisms of cancer through the application of chemical genomics strategies. The UMCCC-HTS Core provides access to compound libraries, screening services, expert consultation, and information sharing for researchers interested in HTS of small molecules, natural product extracts and/or siRNA genomes. The biological and chemical collections at the core are also available for cell profile screening, targeted biology approaches and structure-based molecular modeling. The Core also provides screening to several regional universities and has ongoing collaborations with a number of outside non-profit research Institutions. The core staff assist researchers with assay development, provide training in general HTS techniques, supervise screening campaigns on biomedical targets, manage assay results In a secure relational database and provide advice on counter and secondary screening. Within the HTS Core, medicinal chemistry resources are available for consultation on appropriate follow-up compounds and structure-activity relationship (SAR) analysis. The UMCCC-HTS Core also has an alliance with the Center for Computational Medicine end Bioinformatics (CCMB) to use bioinformatics tools (ConceptGen) for analysis of siRNA HTS results (Sautor et al., 2010). The Core can fully support UMCCC objectives to Identify small molecule probes, potential therapeutic leads and genomic pathways Implicated In malignant diseases, Cancer biology (and relevant genetic models) has been investigated using biochemical and cell-based assays and many of these are amenable to HTS technologies such as flow cytometry, high-content analysis, spectrophotometric detection and transcriptional reporter systems (Collins and Workman, 2006). siRNA HTS, using whole genome or selected subsets of genes, provides pathway analysis and mechanism-based Interrogation of specific genes responsible for human cancer processes. The core and its database of screening results can be used for Individual target-based drug discovery or to Investigate specific chemotypes that affect related targets. Thus, the UMCCC-HTS core is well-positioned to facilitate the discovery of chemical probes for identification and interrogation of cancer targets at the molecular level.

Public Health Relevance

This program funding for the HTS Core will provide University of Michigan scientists with the resources to rapidly test hundreds of thousands of chemicals and thousands of genes for their effects on cells, proteins and enzymes. These studies will provide a first step toward Identifying new drugs to treat cancer and the relevant pathways Involved cancer pathologies.

Agency
National Institute of Health (NIH)
Type
Center Core Grants (P30)
Project #
5P30CA046592-26
Application #
8696626
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
26
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Lee, Alice W; Ness, Roberta B; Roman, Lynda D et al. (2016) Association Between Menopausal Estrogen-Only Therapy and Ovarian Carcinoma Risk. Obstet Gynecol 127:828-36
Mathewson, Nathan D; Jenq, Robert; Mathew, Anna V et al. (2016) Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol 17:505-13
Owen, John Henry; Graham, Martin P; Chinn, Steven B et al. (2016) Novel method of cell line establishment utilizing fluorescence-activated cell sorting resulting in 6 new head and neck squamous cell carcinoma lines. Head Neck 38 Suppl 1:E459-67
Peng, Dongjun; Tanikawa, Takashi; Li, Wei et al. (2016) Myeloid-Derived Suppressor Cells Endow Stem-like Qualities to Breast Cancer Cells through IL6/STAT3 and NO/NOTCH Cross-talk Signaling. Cancer Res 76:3156-65
Kadakia, Kunal C; Snyder, Claire F; Kidwell, Kelley M et al. (2016) Patient-Reported Outcomes and Early Discontinuation in Aromatase Inhibitor-Treated Postmenopausal Women With Early Stage Breast Cancer. Oncologist 21:539-46
Boonstra, Philip S; Mukherjee, Bhramar; Gruber, Stephen B et al. (2016) Tests for Gene-Environment Interactions and Joint Effects With Exposure Misclassification. Am J Epidemiol 183:237-47
Amin, Nisar A; Malek, Sami N (2016) Gene mutations in chronic lymphocytic leukemia. Semin Oncol 43:215-21
Hardiman, Karin M; Ulintz, Peter J; Kuick, Rork D et al. (2016) Intra-tumor genetic heterogeneity in rectal cancer. Lab Invest 96:4-15
Boonstra, Philip S; Taylor, Jeremy M G; Smolska-Ciszewska, Beata et al. (2016) Alpha/beta (α/β) ratio for prostate cancer derived from external beam radiotherapy and brachytherapy boost. Br J Radiol 89:20150957
Di Girolamo, Daniela; Ambrosio, Raffaele; De Stefano, Maria A et al. (2016) Reciprocal interplay between thyroid hormone and microRNA-21 regulates hedgehog pathway-driven skin tumorigenesis. J Clin Invest 126:2308-20

Showing the most recent 10 out of 1165 publications