CANCER CELL BIOLOGY PROGRAM (Project-113) ABSTRACT Overview and Goals: Accumulation of defects in the regulation of cell behavior results in uncontrolled proliferation, immune evasion, invasiveness and metastasis. Understanding these mechanisms will provide new diagnostic markers and therapeutic targets. The major goal of the Cancer Cell Biology (CCB) Program is to foster and improve research focused on dissecting the cellular regulatory functions that establish and maintain this malignant phenotype and to apply this knowledge to translational and clinical investigations. CCB members have expertise in many areas and disciplines: Cell Cycle Regulation, Apoptosis and Autophagy, Developmental Biology and Stem Cells, Immunotherapy/Immunology, Signal Transduction and Tumor Microenvironment and Metastasis. This deep and diverse expertise results in collaborations, enhanced training and facilitation of technological innovations through UCCC Shared Resources (SR). Research Highlight: A multidisciplinary team including members at the UCB consortium site mapped the cell cycle phosphoproteome of the yeast centrosome. This molecular resource will provide foundational knowledge about the cell cycle in cancer and other diseases (Science, 20111). Program Activities: To accomplish its goal, the CCB program co-leaders employ resources provided by the UCCC to foster interactions by organizing retreats, mentoring programs, and weekly seminars attended by program members, students, fellows, and non-program faculty. Our collaborative publications and grants demonstrate the success of our endeavors. Furthermore, key members of the CCB Program have collaborated effectively with other programs, resulting in joint grant awards and submissions. Members: The program has 43 Full members with $2.2M in grant funding from NCI and $5.9M in other peer-reviewed research grant funding in 2015. Members are from 5 basic science (21%) and 7 clinical (51%) departments in the SOM, from the School of Dental Medicine (5%), and the School of Public Health (1%) at AMC; and the College of Liberal Arts and Sciences (2%) at the downtown campus. Thirteen percent of members are at UCB; 2% at CSU; and 5% are at non-consortium institutions. Program members published 690 cancer-relevant publications in the previous grant period of which 41% were inter- and 17% were intra-programmatic. Future Directions: We will enhance our high degree of productivity and collaborative science by continuing to support fundamental research in cell biology, by guiding these fundamental discoveries into the clinic and by leveraging the scientific strengths found in the consortium institutions unique to the State of Colorado. Specifically, we will accomplish this goal by enhancing the training and mentoring of students, fellows and junior faculty, by increasing the number of novel cancer biology and mechanism discoveries that lead to collaborative scientific studies and are translated into clinical applications, and by providing access to new technologies and innovative experimental models of cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
United States
Zip Code
Harder, Bryan; Tian, Wang; La Clair, James J et al. (2017) Brusatol overcomes chemoresistance through inhibition of protein translation. Mol Carcinog 56:1493-1500
Chen, Yufei; Anastassiadis, Konstantinos; Kranz, Andrea et al. (2017) MLL2, Not MLL1, Plays a Major Role in Sustaining MLL-Rearranged Acute Myeloid Leukemia. Cancer Cell 31:755-770.e6
DeRyckere, Deborah; Lee-Sherick, Alisa B; Huey, Madeline G et al. (2017) UNC2025, a MERTK Small-Molecule Inhibitor, Is Therapeutically Effective Alone and in Combination with Methotrexate in Leukemia Models. Clin Cancer Res 23:1481-1492
Scarborough, Hannah A; Helfrich, Barbara A; Casás-Selves, Matias et al. (2017) AZ1366: An Inhibitor of Tankyrase and the Canonical Wnt Pathway that Limits the Persistence of Non-Small Cell Lung Cancer Cells Following EGFR Inhibition. Clin Cancer Res 23:1531-1541
Neelakantan, Deepika; Zhou, Hengbo; Oliphant, Michael U J et al. (2017) EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nat Commun 8:15773
Barón, Anna E; Kako, Severine; Feser, William J et al. (2017) Clinical Utility of Chromosomal Aneusomy in Individuals at High Risk of Lung Cancer. J Thorac Oncol 12:1512-1523
Todd, Maria C; Langan, Thomas A; Sclafani, Robert A (2017) Doxycycline-Regulated p16MTS1 Expression Suppresses the Anchorage-Independence and Tumorigenicity of Breast Cancer Cell Lines that Lack Endogenous p16. J Cancer 8:190-198
Brown, Dustin G; Borresen, Erica C; Brown, Regina J et al. (2017) Heat-stabilised rice bran consumption by colorectal cancer survivors modulates stool metabolite profiles and metabolic networks: a randomised controlled trial. Br J Nutr 117:1244-1256
Haverkos, Bradley M; Abbott, Diana; Hamadani, Mehdi et al. (2017) PD-1 blockade for relapsed lymphoma post-allogeneic hematopoietic cell transplant: high response rate but frequent GVHD. Blood 130:221-228
Shearn, Colin T; Saba, Laura M; Roede, James R et al. (2017) Differential carbonylation of proteins in end-stage human fatty and nonfatty NASH. Free Radic Biol Med 113:280-290

Showing the most recent 10 out of 1448 publications