CANCER CELL BIOLOGY PROGRAM (Project-113) ABSTRACT Overview and Goals: Accumulation of defects in the regulation of cell behavior results in uncontrolled proliferation, immune evasion, invasiveness and metastasis. Understanding these mechanisms will provide new diagnostic markers and therapeutic targets. The major goal of the Cancer Cell Biology (CCB) Program is to foster and improve research focused on dissecting the cellular regulatory functions that establish and maintain this malignant phenotype and to apply this knowledge to translational and clinical investigations. CCB members have expertise in many areas and disciplines: Cell Cycle Regulation, Apoptosis and Autophagy, Developmental Biology and Stem Cells, Immunotherapy/Immunology, Signal Transduction and Tumor Microenvironment and Metastasis. This deep and diverse expertise results in collaborations, enhanced training and facilitation of technological innovations through UCCC Shared Resources (SR). Research Highlight: A multidisciplinary team including members at the UCB consortium site mapped the cell cycle phosphoproteome of the yeast centrosome. This molecular resource will provide foundational knowledge about the cell cycle in cancer and other diseases (Science, 20111). Program Activities: To accomplish its goal, the CCB program co-leaders employ resources provided by the UCCC to foster interactions by organizing retreats, mentoring programs, and weekly seminars attended by program members, students, fellows, and non-program faculty. Our collaborative publications and grants demonstrate the success of our endeavors. Furthermore, key members of the CCB Program have collaborated effectively with other programs, resulting in joint grant awards and submissions. Members: The program has 43 Full members with $2.2M in grant funding from NCI and $5.9M in other peer-reviewed research grant funding in 2015. Members are from 5 basic science (21%) and 7 clinical (51%) departments in the SOM, from the School of Dental Medicine (5%), and the School of Public Health (1%) at AMC; and the College of Liberal Arts and Sciences (2%) at the downtown campus. Thirteen percent of members are at UCB; 2% at CSU; and 5% are at non-consortium institutions. Program members published 690 cancer-relevant publications in the previous grant period of which 41% were inter- and 17% were intra-programmatic. Future Directions: We will enhance our high degree of productivity and collaborative science by continuing to support fundamental research in cell biology, by guiding these fundamental discoveries into the clinic and by leveraging the scientific strengths found in the consortium institutions unique to the State of Colorado. Specifically, we will accomplish this goal by enhancing the training and mentoring of students, fellows and junior faculty, by increasing the number of novel cancer biology and mechanism discoveries that lead to collaborative scientific studies and are translated into clinical applications, and by providing access to new technologies and innovative experimental models of cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA046934-31
Application #
9657683
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-02-01
Budget End
2020-01-31
Support Year
31
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Ren, Shengxiang; Rivard, Christopher J; Yu, Hui et al. (2018) A miRNA Panel Predicts Sensitivity of FGFR Inhibitor in Lung Cancer Cell Lines. Clin Lung Cancer 19:450-456
Donson, Andrew M; Amani, Vladimir; Warner, Elliot A et al. (2018) Identification of FDA-Approved Oncology Drugs with Selective Potency in High-Risk Childhood Ependymoma. Mol Cancer Ther 17:1984-1994
Branchford, B R; Stalker, T J; Law, L et al. (2018) The small-molecule MERTK inhibitor UNC2025 decreases platelet activation and prevents thrombosis. J Thromb Haemost 16:352-363
Pei, Shanshan; Minhajuddin, Mohammad; Adane, Biniam et al. (2018) AMPK/FIS1-Mediated Mitophagy Is Required for Self-Renewal of Human AML Stem Cells. Cell Stem Cell 23:86-100.e6
Ryan, Weston Kenneth; Fernandez, Josiah; Peterson, Mikayla Katherine et al. (2018) Activation of S6 signaling is associated with cell survival and multinucleation in hyperplastic skin after epidermal loss of AURORA-A Kinase. Cell Death Differ :
Monks, Jenifer; Orlicky, David J; Stefanski, Adrianne L et al. (2018) Maternal obesity during lactation may protect offspring from high fat diet-induced metabolic dysfunction. Nutr Diabetes 8:18
Garcia, Tamara B; Fosmire, Susan P; Porter, Christopher C (2018) Increased activity of both CDK1 and CDK2 is necessary for the combinatorial activity of WEE1 inhibition and cytarabine. Leuk Res 64:30-33
Wahdan-Alaswad, R S; Edgerton, S M; Salem, H S et al. (2018) Metformin Targets Glucose Metabolism in Triple Negative Breast Cancer. J Oncol Transl Res 4:
Oweida, Ayman; Phan, Andy; Vancourt, Benjamin et al. (2018) Hypofractionated Radiotherapy Is Superior to Conventional Fractionation in an Orthotopic Model of Anaplastic Thyroid Cancer. Thyroid 28:739-747
Gadalla, Shahinaz M; Wang, Tao; Loftus, David et al. (2018) No association between donor telomere length and outcomes after allogeneic unrelated hematopoietic cell transplant in patients with acute leukemia. Bone Marrow Transplant 53:383-391

Showing the most recent 10 out of 1634 publications