The role of pharmacokinetics (PK) and pharmacodynamics (PD) has increased dramatically as anticancer drug discovery and development has shifted towards molecularly-targeted therapies. Increased appreciation of PK/PD relationships has resulted in greater emphasis on generating and analyzing such data, even for agents without defined molecular targets. Recognition of drug-drug interactions and pharmacogenetic differences in drug metabolism, disposition, and susceptibility has increased the need for assays to define relevant polymorphisms and their clinical impact. The Clinical Pharmacology Analytical Facility (CPAF) was established in 1994 to provide state-of-the-art pharmacology research facilities forthe University of Pittsburgh Cancer Institute (UPCI). The CPAF occupies 1,000 square feet of laboratory space in the Research Pavilion of the Hillman Cancer Center. The CPAF supports many UPCI CCSG programs in addition to the extensive UPCI preclinical and clinical pharmacology research activities ofthe Molecular Therapeutics and Drug Discovery Program. Services include quantitation of drugs, metabolites, and other materials;identification of metabolites;and PK and PD analyses of anticancer agents undergoing preclinical and/or clinical evaluation at UPCI. The CPAF also uses in vitro methods such as human hepatocyte cultures and subcellular fractions, such as microsomes and cytosol, to characterize the cytochrome P450 isoforms and other key drug-metabolizing enzymes responsible for producing metabolites identified. The CPAF provides important consultative services to UPCI investigators on the design of pharmacologic studies and drug assays, metabolism, and PK analyses. The CPAF is co-directed by Drs. Merrill J. Egorin and Jan H. Beumer and overseen by an advisory committee representing the Schools of Medicine and Pharmacy, and the Biostatistics Facility. During the past 6 years, the CPAF has provided support for 21 Cancer Therapy Evaluation Program (CTEP)-sponsored clinical trials at UPCI, 10 investigator-initiated clinical trials at UPCI, 28 CTEP-sponsored clinical trials at other NCI-designated cancer centers or cooperative groups, and 35 animal pharmacology projects. It also provided analytical chemistry support for 3 in vitro pharmacology studies. To expand its capabilities and increase its value, the CPAF has enhanced substantially its analytical chemistry instrumentation, its PK modeling software, and its personnel. Since the last competitive renewal of the UPCI Cancer Center Support Grant, the Facility has acquired an additional 2 LC-MS instruments and 2 LC-MS/MS instruments. Also since the last competitive renewal, the CPAF competed successfully to serve as the Pharmacology Core Laboratory for the Gynecologic Oncology Group and successfully recompeted its role as the Pharmacology Core for the Cancer and Leukemia Group B. The CPAF continues to be a major collaborator of the University of Southern California Biomedical Simulations Resource, thereby allowing the CPAF to implement sophisticated PK and PD modeling software. The requested CCSG funding will support Facility personnel for their efforts in providing consultative services related to assay development, methodology, protocol design, and data interpretation, and their efforts to ensure that instrumentation and software are suitably maintained and available for application to projects by investigators seeking support from the Facility.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RTRB-L)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Correa, Andres F; Toussi, Amir; Amin, Milon et al. (2018) Small Renal Masses in Close Proximity to the Collecting System and Renal Sinus Are Enriched for Malignancy and High Fuhrman Grade and Should Be Considered for Early Intervention. Clin Genitourin Cancer 16:e729-e733
Wang, Yi-Jun; Fletcher, Rochelle; Yu, Jian et al. (2018) Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis 5:194-203
Bakkenist, Christopher J; Lee, James J; Schmitz, John C (2018) ATM Is Required for the Repair of Oxaliplatin-Induced DNA Damage in Colorectal Cancer. Clin Colorectal Cancer 17:255-257
Low, Carissa A; Bovbjerg, Dana H; Ahrendt, Steven et al. (2018) Fitbit step counts during inpatient recovery from cancer surgery as a predictor of readmission. Ann Behav Med 52:88-92
Tasdemir, Nilgun; Bossart, Emily A; Li, Zheqi et al. (2018) Comprehensive Phenotypic Characterization of Human Invasive Lobular Carcinoma Cell Lines in 2D and 3D Cultures. Cancer Res 78:6209-6222
Mazharuddin, Samir; Chattopadhyay, Anuja; Levy, Moshe Y et al. (2018) IRF2BP2-RARA t(1;17)(q42.3;q21.2) APL blasts differentiate in response to all-trans retinoic acid. Leuk Lymphoma 59:2246-2249
Basudan, Ahmed; Priedigkeit, Nolan; Hartmaier, Ryan J et al. (2018) Frequent ESR1 and CDK Pathway Copy-Number Alterations in Metastatic Breast Cancer. Mol Cancer Res :
Beumer, Jan H; Chu, Edward; Allegra, Carmen et al. (2018) Therapeutic Drug Monitoring in Oncology: International Association of Therapeutic Drug Monitoring and Clinical Toxicology Recommendations for 5-Fluorouracil Therapy. Clin Pharmacol Ther :
Song, Xinxin; Zhu, Shan; Chen, Pan et al. (2018) AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System Xc- Activity. Curr Biol 28:2388-2399.e5
Leng, Shuguang; Diergaarde, Brenda; Picchi, Maria A et al. (2018) Gene Promoter Hypermethylation Detected in Sputum Predicts FEV1 Decline and All-Cause Mortality in Smokers. Am J Respir Crit Care Med 198:187-196

Showing the most recent 10 out of 1187 publications