Cancer Therapeutics Program (CTP) The overarching goal of the Cancer Therapeutics Program (CTP) is to develop innovative approaches to discover, design, develop, and validate novel anticancer agents and combination regimens for the treatment of human cancers. To achieve this mission, the Program focuses on three specific aims: 1) investigate the mechanisms of action of new and existing anticancer agents; 2) discover and develop in a pre-clinical setting, novel targets and assays to complement the innovative approaches to drug discovery, and novel agents and combination regimens; and 3) conduct early-phase (I/II) clinical trials with a focus on translation of UPCI science and discoveries of novel agents as well as partnering with the National Cancer Institute (NCI), NCI cancer centers, other academic centers, cooperative groups, and industry. The strategy for successfully carrying out this mission requires the involvement of the entire continuum of basic, preclinical, and clinical/translational research. The CTP has 47 members representing 13 academic departments and 4 schools of the University of Pittsburgh. Members of the Program conduct cancer-focused research that receives $11.2 M in total annual direct funding, including $4.3 M from the NCI and $4.1 M from other peer- reviewed sources. In addition, CTP members receive over $2.7 M annually from ?non-peer reviewed? grant mechanisms. Between January 2010 and April 2014, CTP members authored 672 cancer-related publications of which 35% resulted from intra-programmatic and 37% from inter-programmatic collaborations. Approximately 40% of the papers represent collaborations with external investigators. UPCI support, including Clinical Protocol and Data Management and Shared Resources, specifically the Animal Facility, Biostatistics Facility, Cancer Bioinformatics Services, Cancer Genomics Facility, Cancer Pharmacokinetics and Pharmacodynamics Facility, Cancer Proteomics Facility, Cell and Tissue Imaging Facility, Chemical Biology Facility, Cytometry Facility, Immunological Monitoring and Cellular Products Laboratory, In Vivo Imaging Facility, Investigational Drug Services, and Tissue and Research Pathology Services facilitates and enhances CTP research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA047904-29
Application #
9324848
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2017-08-01
Budget End
2018-07-31
Support Year
29
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Samuelsson, Laura B; Bovbjerg, Dana H; Roecklein, Kathryn A et al. (2018) Sleep and circadian disruption and incident breast cancer risk: An evidence-based and theoretical review. Neurosci Biobehav Rev 84:35-48
Chen, Dongshi; Ni, Hong-Min; Wang, Lei et al. (2018) PUMA induction mediates acetaminophen-induced necrosis and liver injury. Hepatology :
Tahata, Shawn; Singh, Shivendra V; Lin, Yan et al. (2018) Evaluation of Biodistribution of Sulforaphane after Administration of Oral Broccoli Sprout Extract in Melanoma Patients with Multiple Atypical Nevi. Cancer Prev Res (Phila) 11:429-438
Moravcikova, Erika; Meyer, E Michael; Corselli, Mirko et al. (2018) Proteomic Profiling of Native Unpassaged and Culture-Expanded Mesenchymal Stromal Cells (MSC). Cytometry A 93:894-904
Beumer, Jan H; Inker, Lesley A; Levey, Andrew S (2018) Improving Carboplatin Dosing Based on EstimatedĀ GFR. Am J Kidney Dis 71:163-165
Shiffman, Saul; Mao, Jason M; Kurland, Brenda F et al. (2018) Do non-daily smokers compensate for reduced cigarette consumption when smoking very-low-nicotine-content cigarettes? Psychopharmacology (Berl) 235:3435-3441
Cao, Chunyu; Wu, Hao; Vasilatos, Shauna N et al. (2018) HDAC5-LSD1 axis regulates antineoplastic effect of natural HDAC inhibitor sulforaphane in human breast cancer cells. Int J Cancer 143:1388-1401
Yochum, Zachary A; Cades, Jessica; Wang, Hailun et al. (2018) Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene :
Lee, Young-Sun; Lee, Dae-Hee; Choudry, Haroon A et al. (2018) Ferroptosis-Induced Endoplasmic Reticulum Stress: Cross-talk between Ferroptosis and Apoptosis. Mol Cancer Res 16:1073-1076
Tong, Jingshan; Zheng, Xingnan; Tan, Xiao et al. (2018) Mcl-1 Phosphorylation without Degradation Mediates Sensitivity to HDAC Inhibitors by Liberating BH3-Only Proteins. Cancer Res 78:4704-4715

Showing the most recent 10 out of 1187 publications