IMMUNOLOGICAL MECHANISMS IN CANCER PROGRAM The Immunological Mechanisms in Cancer Program comprises nineteen investigators from six academic departments. The primary objectives of the IMC Program are 1) to create a strong, intellectual and highly interactive scientific environment in which the functioning of the immune system as it relates to the cancer problem can be imaginatively and efficiently investigated;and 2) to foster, through intra- and inter-programmatic collaboration, the translation of the knowledge gained from these studies to the development of approaches for the prevention, diagnosis and treatment of cancer. The interests of the faculty are varied but the program is unified by four main themes: 1) to improve our understanding of the molecular and cellular basis for the development hematopoietic malignancies;2) to elucidate the nature of tumor antigen recognition and response to tumors by the immune system, thereby supporting development of immunotherapeutic approaches to cancer;3) to investigate the role of viruses in the development of cancer and cancer therapies;and 4) to create improvements in bone marrow transplantation approaches for the treatment of hematopoietic malignancies. Of the nineteen program members, eighteen have been funded through peer-reviewed awards. Current NCI and total peer review support for this program total approximately 1.8 and 8.2 million dollars, respectively. In the previous funding period, program members published 150 cancer-relevant papers, 14 and 20 percent of which resulted from intra, and inter-programmatic collaborations, respectively. Collaborations between members of this and other programs in the Kimmel Cancer Center have contributed to the production of reagents and analysis of preclinical models for testing novel therapies that have resulted in clinical trials. The expertise and the insight provided by members of the program is of increasing importance to the center for the definition of both functional and molecular aspects of the host-tumor interaction. Further development of the program is planned in the areas of tumor immunology and the immunobiology of dendritic cells.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Thomas Jefferson University
United States
Zip Code
Teh, Jessica L F; Purwin, Timothy J; Greenawalt, Evan J et al. (2016) An In Vivo Reporter to Quantitatively and Temporally Analyze the Effects of CDK4/6 Inhibitor-Based Therapies in Melanoma. Cancer Res 76:5455-66
Ozaki, Shinji; Vuyyuru, Raja; Kageyama, Ken et al. (2016) Establishment and Characterization of Orthotopic Mouse Models for Human Uveal Melanoma Hepatic Colonization. Am J Pathol 186:43-56
Lu, Huimin; Wang, Tao; Li, Jing et al. (2016) αvβ6 Integrin Promotes Castrate-Resistant Prostate Cancer through JNK1-Mediated Activation of Androgen Receptor. Cancer Res 76:5163-74
Zhao, Yongtong; Shapiro, Sandor S; Eto, Masumi (2016) F-actin clustering and cell dysmotility induced by the pathological W148R missense mutation of filamin B at the actin-binding domain. Am J Physiol Cell Physiol 310:C89-98
Singh, Amrita; Fedele, Carmine; Lu, Huimin et al. (2016) Exosome-mediated Transfer of αvβ3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Mol Cancer Res 14:1136-1146
Hutcheson, Jack; Balaji, Uthra; Porembka, Matthew R et al. (2016) Immunologic and Metabolic Features of Pancreatic Ductal Adenocarcinoma Define Prognostic Subtypes of Disease. Clin Cancer Res 22:3606-17
Pattison, Amanda M; Blomain, Erik S; Merlino, Dante J et al. (2016) Intestinal Enteroids Model Guanylate Cyclase C-Dependent Secretion Induced by Heat-Stable Enterotoxins. Infect Immun 84:3083-91
Zhao, Qian; Deng, Shengqiong; Wang, Guangxue et al. (2016) A direct quantification method for measuring plasma MicroRNAs identified potential biomarkers for detecting metastatic breast cancer. Oncotarget 7:21865-74
Curry, Joseph M; Tassone, Patrick; Cotzia, Paolo et al. (2016) Multicompartment metabolism in papillary thyroid cancer. Laryngoscope 126:2410-8
Dowling, John P; Cai, Yubo; Bertin, John et al. (2016) Kinase-independent function of RIP1, critical for mature T-cell survival and proliferation. Cell Death Dis 7:e2379

Showing the most recent 10 out of 674 publications