Among the keys to deciphering normal physiological processes and their derangements in neoplasia are an understanding of the relationship in spatial and temporal terms of different cellular components to each other, and the related ability to correlate structure with function. Providing these capabilities of visualization is the goal of the KCC Bioimaging Facility/Shared Resource by having available powerful, reliable, and readily accessible light microscopic image acquisition and analysis capabilities for KCC investigators. The Facility is Cancer Center-managed and operates with well-trained staff and a faculty supervisor. Dr. James Keen, and provides training in operation of all instruments as well as consultation in operation, methodology, experimental approach, and interpretation. It is open for scheduled use at any time by trained investigators, or the Facility operator can perform imaging and analysis with laboratory personnel. Through the operation of this Shared Resource, individual KCC investigators are assured of state-of-the-art and reliable facilities operated with a high degree of technical expertise, and are relieved of the obligation for substantial outlay for equipment, maintenance and personnel training. The facility has provided service for more than 90 laboratories and several hundred individuals during the past award period, of which more than 80% are Cancer Center members. Major support for the Facility has been derived from successful competition for extramural funding, from institutional and Cancer Center sources, and from user chargebacks tied to services rendered.

Public Health Relevance

The Kimmel Cancer Center Bioimaging Facility provides investigators with the capability to visualize cells and structures within living and fixed cells at the light microscope level. By being able to determine the location and distribution of cellular components in time and space in normal and neoplastic samples, investigators can gain new information about how cancer cells differ from normal ones, and test hypotheses about cancer causation and progression.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Thomas Jefferson University
United States
Zip Code
Ozaki, Shinji; Vuyyuru, Raja; Kageyama, Ken et al. (2016) Establishment and Characterization of Orthotopic Mouse Models for Human Uveal Melanoma Hepatic Colonization. Am J Pathol 186:43-56
Teh, Jessica L F; Purwin, Timothy J; Greenawalt, Evan J et al. (2016) An In Vivo Reporter to Quantitatively and Temporally Analyze the Effects of CDK4/6 Inhibitor-Based Therapies in Melanoma. Cancer Res 76:5455-66
Zhao, Yongtong; Shapiro, Sandor S; Eto, Masumi (2016) F-actin clustering and cell dysmotility induced by the pathological W148R missense mutation of filamin B at the actin-binding domain. Am J Physiol Cell Physiol 310:C89-98
Lu, Huimin; Wang, Tao; Li, Jing et al. (2016) αvβ6 Integrin Promotes Castrate-Resistant Prostate Cancer through JNK1-Mediated Activation of Androgen Receptor. Cancer Res 76:5163-74
Hutcheson, Jack; Balaji, Uthra; Porembka, Matthew R et al. (2016) Immunologic and Metabolic Features of Pancreatic Ductal Adenocarcinoma Define Prognostic Subtypes of Disease. Clin Cancer Res 22:3606-17
Singh, Amrita; Fedele, Carmine; Lu, Huimin et al. (2016) Exosome-mediated Transfer of αvβ3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Mol Cancer Res 14:1136-1146
Zhao, Qian; Deng, Shengqiong; Wang, Guangxue et al. (2016) A direct quantification method for measuring plasma MicroRNAs identified potential biomarkers for detecting metastatic breast cancer. Oncotarget 7:21865-74
Pattison, Amanda M; Blomain, Erik S; Merlino, Dante J et al. (2016) Intestinal Enteroids Model Guanylate Cyclase C-Dependent Secretion Induced by Heat-Stable Enterotoxins. Infect Immun 84:3083-91
Curry, Joseph M; Tassone, Patrick; Cotzia, Paolo et al. (2016) Multicompartment metabolism in papillary thyroid cancer. Laryngoscope 126:2410-8
Dowling, John P; Cai, Yubo; Bertin, John et al. (2016) Kinase-independent function of RIP1, critical for mature T-cell survival and proliferation. Cell Death Dis 7:e2379

Showing the most recent 10 out of 674 publications