The Cancer Informatics Core is comprised of informatics faculty and staff who are focused on providing informatics services and necessary computational infrastructure for the diverse informatics needs of Cancer Center members in the Robert H. Lurie Comprehensive Cancer Center. The Core works closely with RHLCCC governance committees to promulgate standards, provide advice and guidance, optimize systems and minimize redundancy through continued integration of data, databases, applications, software and computational infrastructure that is necessary to support cancer translational research. Since the last competitive renewal, the Core has established a scalable high performance cyber-infrastructure equipped with >200 TB of tiered storage and a virtualized data center to meet the data and computational needs of Cancer Center members. The Core also provides access and training for Cancer Center members on the 7000 core Northwestern Quest cluster for projects requiring high performance computing. During the past five years, the Core has met its primary goals of providing the necessary computational infrastructure for managing clinical trials with the Clinical Research Office, storage for microarray and next generation sequencing. The core has provided the necessary oversight, project management, and software development expertise to deliver data management and reporting applications for prostate cancer and breast cancer repositories. The core has also worked closely with the RHLCCC neuro-oncology investigators to deliver innovative patient-facing intake and assessment applications that are coupled to clinical data available through the Enterprise Data Warehouse with molecular data coming from biospecimens, including gene expression, copy number, and methylation data. We have also provided sophisticated gene expression analysis, pathway enrichment analysis, and methylation data analysis including visualization methods for more than 70 cancer center members and 160 projects during the past five years. In addition to providing these genomic analysis services to our cancer center members, we have released the tools developed for these projects as open source bioconductor packages [lumi, GeneAnswers, ChlPpeakAnno, MassSpecWavelet). The core has also developed, in conjunction with the Northwestern University Biomedical Informatics Center (part ofthe Northwestern CTSA) a number of web-based clinical research software modules that have been released as open source tools (Patient Study Calendar, Registar, eNOTIS, Surveyor). In addition, the core has developed and released tools for scientific network analysis (LatticeGrid) and competition management (NUCATS Assist). The Core will continue to support and extend these activities. We anticipate that during the next five year there will be additional member-driven demand in the area of next generation sequencing, high performance computing, and FISMA compliant computing.

Public Health Relevance

The overall goal of the Cancer Informatics Core facility is to provide RHLCCC investigators with genomic analysis tools, data management services, and cyber-infrastructure to answer cancer research questions. To accelerate cancer research in the RHLCCC, the Cancer Informatics Core works closely with cancer investigators and RHLCCC cores including the Clinical Research Office, the Biostatistics Core Facility, Cell Imaging, Pathology Core, Outcomes Measure and Survey Core, and the Flow Cytometry Core.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA060553-19
Application #
8588658
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2018-07-31
Budget Start
2013-09-16
Budget End
2014-07-31
Support Year
19
Fiscal Year
2013
Total Cost
$128,718
Indirect Cost
$45,453
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Moinpour, Carol M; Donaldson, Gary W; Davis, Kimberly M et al. (2017) The challenge of measuring intra-individual change in fatigue during cancer treatment. Qual Life Res 26:259-271
Lamar, Tyra; Vanoye, Carlos G; Calhoun, Jeffrey et al. (2017) SCN3A deficiency associated with increased seizure susceptibility. Neurobiol Dis 102:38-48
Yu, Dou; Khan, Omar F; SuvĂ , Mario L et al. (2017) Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression. Proc Natl Acad Sci U S A 114:E6147-E6156
Mohr, David C; Tomasino, Kathryn Noth; Lattie, Emily G et al. (2017) IntelliCare: An Eclectic, Skills-Based App Suite for the Treatment of Depression and Anxiety. J Med Internet Res 19:e10
Apple, Alexandra C; Ryals, Anthony J; Alpert, Kathryn I et al. (2017) Subtle hippocampal deformities in breast cancer survivors with reduced episodic memory and self-reported cognitive concerns. Neuroimage Clin 14:685-691
Lampe, Johanna W; Huang, Ying; Neuhouser, Marian L et al. (2017) Dietary biomarker evaluation in a controlled feeding study in women from the Women's Health Initiative cohort. Am J Clin Nutr 105:466-475
Ichikawa, Yuichi; Connelly, Caitlin F; Appleboim, Alon et al. (2017) A synthetic biology approach to probing nucleosome symmetry. Elife 6:
Zhou, Qiyuan; Dai, Jingbo; Chen, Tianji et al. (2017) Downregulation of PKC?/Pard3/Pard6b is responsible for lung adenocarcinoma cell EMT and invasion. Cell Signal 38:49-59
Park, Jong Kook; Peng, Han; Yang, Wending et al. (2017) miR-184 exhibits angiostatic properties via regulation of Akt and VEGF signaling pathways. FASEB J 31:256-265
Raji, Idris; Yadudu, Fatima; Janeira, Emily et al. (2017) Bifunctional conjugates with potent inhibitory activity towards cyclooxygenase and histone deacetylase. Bioorg Med Chem 25:1202-1218

Showing the most recent 10 out of 1878 publications