? TUMOR ENVIRONMENT AND METASTASIS The Tumor Environment and Metastasis (TEAM) Program of the Robert H. Lurie Comprehensive Cancer Center is a multidisciplinary basic science program that evolved from the Tumor Invasion, Metastasis and Angiogenesis (TIMA) Program to reflect recent conceptual advances in our understanding of tumor cell plasticity, heterogeneity and immunology. TEAM retains its strengths in areas of cell adhesion, migration and the role of extracellular matrix in cancer, while adding a new aim in the area of tumor immunology and inflammation. The objective of the TEAM Program is to elucidate how interactions between tumor cells, immune cells and components of the host stromal microenvironment mediate tumor development and progression. Toward achieving this objective, TEAM Program members are addressing the following three specific aims: (1) determine how cells interact with each other and their matrix, and define how adhesion-mediated signaling events affect tumor cell plasticity, invasion and metastasis; (2) elucidate the role of the extracellular matrix and the lympho-vascular system in tumor progression and therapeutic resistance; and (3) understand the role of innate and adaptive immune systems in cancer initiation and progression, and develop strategies to effectively activate the immune system against cancer. The TEAM Program has 35 core members from 14 different departments and 3 schools at Northwestern University. Hidayatullah Munshi, MD, with expertise in cell-matrix interactions and matrix-driven drug resistance, was appointed as the Leader of the TEAM Program to replace Dr. Kathleen Green who became Associate Director for Basic Sciences in conjunction with reorganization of the Basic Science division. Carole LaBonne, PhD, who is interested in understanding how neural crest-derived factors promote tumor progression and metastasis, remains the co-Leader of the TEAM Program. Program members are highly interactive intra- and inter- programmatically, collaborating on joint basic and translational research initiatives. During the last budget year, the TEAM Program received funding of $11,541,419 (direct) in cancer-relevant peer-reviewed grant support, with $2,275,130 (direct) from the NCI and $9,266,289 (direct) from other peer-reviewed sources. Over the course of the current funding period, program members have published 411 cancer-relevant scientific articles. Of these, 24% were in high impact journals, 16% were intra-programmatic, 34% were inter-programmatic, and 73% were inter-institutional collaborations. To successfully achieve the aims of the TEAM Program, future plans of the TEAM Program include strategic recruitment of faculty, particularly in the areas of tumor plasticity and immunology, and working with clinical partners to accelerate clinical translation of basic science discoveries by TEAM members.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA060553-25
Application #
9762041
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
25
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Hong, Bong Jin; Iscen, Aysenur; Chipre, Anthony J et al. (2018) Highly Stable, Ultrasmall Polymer-Grafted Nanobins (usPGNs) with Stimuli-Responsive Capability. J Phys Chem Lett 9:1133-1139
Smith, Erica D; Garza-Gongora, Arturo G; MacQuarrie, Kyle L et al. (2018) Interstitial telomeric loops and implications of the interaction between TRF2 and lamin A/C. Differentiation 102:19-26
Hsiao, Hsi-Min; Fernandez, Ramiro; Tanaka, Satona et al. (2018) Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1?. J Clin Invest 128:2833-2847
Mehta, Amol; Awah, Chidiebere U; Sonabend, Adam M (2018) Topoisomerase II Poisons for Glioblastoma; Existing Challenges and Opportunities to Personalize Therapy. Front Neurol 9:459
Brown, Jessica H; Das, Prativa; DiVito, Michael D et al. (2018) Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater 73:217-227
Ntai, Ioanna; Fornelli, Luca; DeHart, Caroline J et al. (2018) Precise characterization of KRAS4b proteoforms in human colorectal cells and tumors reveals mutation/modification cross-talk. Proc Natl Acad Sci U S A 115:4140-4145
Wiwatpanit, Teerawat; Remis, Natalie N; Ahmad, Aisha et al. (2018) Codeficiency of Lysosomal Mucolipins 3 and 1 in Cochlear Hair Cells Diminishes Outer Hair Cell Longevity and Accelerates Age-Related Hearing Loss. J Neurosci 38:3177-3189
Malik, Neha; Iyamu, Iredia D; Scheidt, Karl A et al. (2018) Synthesis of a novel fused pyrrolodiazepine-based library with anti-cancer activity. Tetrahedron Lett 59:1513-1516
Wong, Yvette C; Ysselstein, Daniel; Krainc, Dimitri (2018) Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554:382-386
Ladomersky, Erik; Zhai, Lijie; Lenzen, Alicia et al. (2018) IDO1 Inhibition Synergizes with Radiation and PD-1 Blockade to Durably Increase Survival Against Advanced Glioblastoma. Clin Cancer Res 24:2559-2573

Showing the most recent 10 out of 1972 publications