Cancers are composed of multiple cell types, including fibroblasts and epithelial cells;innate and adaptive immune cells;and cells forming blood and lymphatic vasculature;as well as specialized mesenchymal cell-types unique to each tissue microenvironment. While tissue homeostasis is maintained by collaborative interactions between these diverse cell types, cancer development is enhanced when genetically altered initiated cells harness these collaborative capabilities to favor their own survival and, in so doing, hijack or exploit normal physiological processes typically involved in maintaining tissue homeostasis. While previously supporting research programs focused solely on cancer and immunity, the expanded Cancer, Immunity, and the Microenvironment Program (Program) now supports research programs revealing insights into the interactions between evolving neoplastic cells with activated non-neoplastic host cells, and with soluble or insoluble components of extracellular matrix, as well as studies based on these interactions that foster development of novel cellular or molecular-based strategies to combat cancer. Specific scientific goals of the Program include: (1) to explore the relationship between neoplastic cells and stromal cells (i.e., immune, vascular, and mesenchymal) in mouse models of cancer to gain insights into the ability of stromal cells in the tumor microenvironment to promote or deter tumorigenesis;(2) to identify molecules and pathways in the tumor microenvironment that regulate anti-tumor activity;(3) to study the relationship between viral infections and malignancy, particularly in immunodeficient patients with HIV infection, and to develop new approaches for the prevention and treatment of malignancy in this population;and (4) to provide the basic scientific foundation and support for the application of new immune- or microenvironment-based therapeutics in cancer in conjunction with the organ-based Helen Diller Family Comprehensive Cancer Center (Center) Programs. With these expanded goals, the retooled Program grew to 27 faculty representing 13 departments in the School of Medicine. Faculty in the new Cancer, Immunity, and the Microenvironment Program are supported by $16,323,690 in NCI and other peer-reviewed grants per year, and published 612 scientific articles in the previous funding cycle. The Program has 6% intra-programmatic and 21% inter-programmatic publications.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA082103-15
Application #
8567866
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
15
Fiscal Year
2013
Total Cost
$96,543
Indirect Cost
$90,775
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
John, Constance M; Phillips, Nancy J; Din, Richard et al. (2016) Lipooligosaccharide Structures of Invasive and Carrier Isolates of Neisseria meningitidis Are Correlated with Pathogenicity and Carriage. J Biol Chem 291:3224-38
Shatsky, Maxim; Dong, Ming; Liu, Haichuan et al. (2016) Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions. Mol Cell Proteomics 15:2186-202
Nordström, Tobias; Van Blarigan, Erin L; Ngo, Vy et al. (2016) Associations between circulating carotenoids, genomic instability and the risk of high-grade prostate cancer. Prostate 76:339-48
Bulut-Karslioglu, Aydan; Biechele, Steffen; Jin, Hu et al. (2016) Inhibition of mTOR induces a paused pluripotent state. Nature 540:119-123
Akutagawa, J; Huang, T Q; Epstein, I et al. (2016) Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras. Leukemia 30:1335-43
Baeza-Raja, Bernat; Sachs, Benjamin D; Li, Pingping et al. (2016) p75 Neurotrophin Receptor Regulates Energy Balance in Obesity. Cell Rep 14:255-68
Ko, Andrew H; Bekaii-Saab, Tanios; Van Ziffle, Jessica et al. (2016) A Multicenter, Open-Label Phase II Clinical Trial of Combined MEK plus EGFR Inhibition for Chemotherapy-Refractory Advanced Pancreatic Adenocarcinoma. Clin Cancer Res 22:61-8
Nosbaum, Audrey; Prevel, Nicolas; Truong, Hong-An et al. (2016) Cutting Edge: Regulatory T Cells Facilitate Cutaneous Wound Healing. J Immunol 196:2010-4
Phan, An T; Fernandez, Samantha G; Somberg, Jessica J et al. (2016) Epstein-Barr virus latency type and spontaneous reactivation predict lytic induction levels. Biochem Biophys Res Commun 474:71-5
Chang, Matthew T; Asthana, Saurabh; Gao, Sizhi Paul et al. (2016) Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 34:155-63

Showing the most recent 10 out of 135 publications