The Tissue Core (the Core) provides both tissue collection and analytic services, and sets the standards for the use of human tissue across all research programs at the UCSF Helen Diller Family Comprehensive Cancer Center (Center), including those that have separately managed tissue-collection efforts. In this latter function. Tissue Core provides oversight and guidance for common issues including tissue consent, standard operating procedures, databases, and quality control (QC). The Core provides tissue-banking services, partially supported by recharge to user programs, including procurement, annotation, processing, storage, tracking, and distribution. Several programs provide direct financial support for Core staff for this purpose. The Core acts as the central hub for the collection of fresh surgical tissue from the hospitals at the Mt. Zion and Moffitt-Long (Parnassus) campuses for those programs without their own tissue- collection efforts. The Core supports the processing, storage, and distribution of blood from patients at UCSF and other sites. In addition, the Core collects, and manages solid tissue from patients at hospitals offsite for several clinical efforts. The Core offers routine histology services, including sectioning, staining, histologic interpretation, and tissue microarray preparation. Distribution of banked material requires approval by the Institutional Review Board (IRB), and by the appropriate programmatic Tissue Utilization Committee.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA082103-16
Application #
8693943
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
16
Fiscal Year
2014
Total Cost
$368,925
Indirect Cost
$135,312
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
John, Constance M; Phillips, Nancy J; Din, Richard et al. (2016) Lipooligosaccharide Structures of Invasive and Carrier Isolates of Neisseria meningitidis Are Correlated with Pathogenicity and Carriage. J Biol Chem 291:3224-38
Shatsky, Maxim; Dong, Ming; Liu, Haichuan et al. (2016) Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions. Mol Cell Proteomics 15:2186-202
Nordström, Tobias; Van Blarigan, Erin L; Ngo, Vy et al. (2016) Associations between circulating carotenoids, genomic instability and the risk of high-grade prostate cancer. Prostate 76:339-48
Bulut-Karslioglu, Aydan; Biechele, Steffen; Jin, Hu et al. (2016) Inhibition of mTOR induces a paused pluripotent state. Nature 540:119-123
Akutagawa, J; Huang, T Q; Epstein, I et al. (2016) Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras. Leukemia 30:1335-43
Baeza-Raja, Bernat; Sachs, Benjamin D; Li, Pingping et al. (2016) p75 Neurotrophin Receptor Regulates Energy Balance in Obesity. Cell Rep 14:255-68
Ko, Andrew H; Bekaii-Saab, Tanios; Van Ziffle, Jessica et al. (2016) A Multicenter, Open-Label Phase II Clinical Trial of Combined MEK plus EGFR Inhibition for Chemotherapy-Refractory Advanced Pancreatic Adenocarcinoma. Clin Cancer Res 22:61-8
Nosbaum, Audrey; Prevel, Nicolas; Truong, Hong-An et al. (2016) Cutting Edge: Regulatory T Cells Facilitate Cutaneous Wound Healing. J Immunol 196:2010-4
Phan, An T; Fernandez, Samantha G; Somberg, Jessica J et al. (2016) Epstein-Barr virus latency type and spontaneous reactivation predict lytic induction levels. Biochem Biophys Res Commun 474:71-5
Chang, Matthew T; Asthana, Saurabh; Gao, Sizhi Paul et al. (2016) Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 34:155-63

Showing the most recent 10 out of 135 publications