Flow Cytometry The Flow Cytometry Core provides services to HCCC members from all 6 research programs conducting both laboratory and clinical cancer research. The mission of the Flow Cytometry Facility is to serve HCCC investigators by providing state-of-the-art Flow Cytometry Services including: 1) High speed sorting 2) Multi-parameter analysis 3) High efficiency purification of cell subsets 4) Training and assisting investigators with software programs available for interpretation and analysis of data 5) Individual training of the investigators and their laboratory personnel in the use of the bench-top instruments, which are subsequently available to them on a 24/7 basis. The Flow Cytometry Facility is in a constant process of developing new technology and services as requested and/or needed by HCCC investigators. Consultation is readily available to all investigators by the Director, the Technical Director and other support personnel in the facility. In 2009, 72 HCCC members with peer-reviewed research funding used the Flow Cytometry Facility.

Public Health Relevance

The ability to analyze the expression of molecules on the surface and within individual cells, and to sort those cells based on expression of those molecules, is an essential tool for many cancer investigators. The cancer research supported by this shared resource provides state-of-the-art facilities and outstanding expertise in Flow Cytometry and cell sorting.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA086862-12
Application #
8381318
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-05-03
Budget End
2013-03-31
Support Year
12
Fiscal Year
2012
Total Cost
$120,208
Indirect Cost
$32,873
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Machiela, Mitchell J; Lan, Qing; Slager, Susan L et al. (2016) Genetically predicted longer telomere length is associated with increased risk of B-cell lymphoma subtypes. Hum Mol Genet 25:1663-76
Fink, Aliza K; Yanik, Elizabeth L; Marshall, Bruce C et al. (2016) Cancer risk among lung transplant recipients with cystic fibrosis. J Cyst Fibros :
Mambetsariev, Nurbek; Lin, Wai W; Stunz, Laura L et al. (2016) Nuclear TRAF3 is a negative regulator of CREB in B cells. Proc Natl Acad Sci U S A 113:1032-7
Vander Weg, Mark W; Cozad, Ashley J; Howren, M Bryant et al. (2016) An individually-tailored smoking cessation intervention for rural Veterans: a pilot randomized trial. BMC Public Health 16:811
Schroeder, Mary C; Chapman, Cole G; Nattinger, Matthew C et al. (2016) Variation in geographic access to chemotherapy by definitions of providers and service locations: a population-based observational study. BMC Health Serv Res 16:274
Brooks, Jennifer D; John, Esther M; Mellemkjaer, Lene et al. (2016) Body mass index, weight change, and risk of second primary breast cancer in the WECARE study: influence of estrogen receptor status of the first breast cancer. Cancer Med 5:3282-3291
Craciun, Ioana; Fenner, Amanda M; Kerns, Robert J (2016) N-Arylacyl O-sulfonated aminoglycosides as novel inhibitors of human neutrophil elastase, cathepsin G and proteinase 3. Glycobiology 26:701-9
Wang, Bingxuan; Klaren, William D; Wels, Brian R et al. (2016) Dietary Manganese Modulates PCB126 Toxicity, Metal Status, and MnSOD in the Rat. Toxicol Sci 150:15-26
Klaren, William D; Gibson-Corley, Katherine N; Wels, Brian et al. (2016) Assessment of the Mitigative Capacity of Dietary Zinc on PCB126 Hepatotoxicity and the Contribution of Zinc to Toxicity. Chem Res Toxicol 29:851-9
Safaeian, M; Robbins, H A; Berndt, S I et al. (2016) Risk of Colorectal Cancer After Solid Organ Transplantation in the United States. Am J Transplant 16:960-7

Showing the most recent 10 out of 463 publications