Human biospecimens are essential for translational cancer research. They provide materials needed to directly investigate the mechanisms of neoplasia, to identify genes and proteins relevant to cancer pathogenesis, to validate biomarkers which can better predict the course of disease, and to develop new or personalized medical therapies for cancer patients. Accordingly, the goal of the Tissue Procurement Core (TPC) is to provide cancer center members with a centralized, integrated, and cost-effective resource to collect, store, and utilize human biospecimens for translational cancer research. This goal is achieved by three related aims: 1) To provide a general archive of annotated frozen tumor and patient-matched nonmalignant tissues ('tumor bank') for pilot, retrospective correlative science studies;2) To assist investigators in the prospective collection and storage of biospecimens from participants enrolled on specific clinical studies;3) To facilitate the use of human biospecimens and their derivatives for molecular and genomic cancer research. Dedicated staff and facilities are used to generate nucleic acid (genomic DNA and RNA) and histological sections from collected patient specimens for investigator studies. Technologies to facilitate tissuebased translational research such as laser capture microdissection and tissue microarray construction are also available. Active participation in the Cancer Biomedical Informatics Grid (caBlG?*) program has resulted in the development and adoption of caTissue Suite, a state-of-the-art web-based, software application for tracking annotating, and requesting biospecimens. Increasing standardization, following the NCI's Office of Biorepositories and Biospecimen Research (OBBR) Best Practices recommendations, continues to improve the quality and efficiency of Core operations. To date, the TPC has provided high-quality biospecimens and biospecimen-related services for numerous funded and published studies, and continues to be a national leader in biospecimen banking informatics.

Public Health Relevance

Human biospecimens are essential for translational cancer research that ultimately leads to improved measures for cancer prevention and treatment. The goal of the Tissue Procurement Core is to assist cancer researchers in the collection, storage, and utilization of biospecimens collected from cancer patients and study participants, in order to better understand the molecular and genomic basis of cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA091842-13
Application #
8705879
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
13
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Waqar, Saiama N; Waqar, Sadaf H; Trinkaus, Kathryn et al. (2018) Brain Metastases at Presentation in Patients With Non-Small Cell Lung Cancer. Am J Clin Oncol 41:36-40
May-Zhang, Aaron A; Deal, Karen K; Southard-Smith, E Michelle (2018) Optimization of Laser-Capture Microdissection for the Isolation of Enteric Ganglia from Fresh-Frozen Human Tissue. J Vis Exp :
Harris-Hayes, Marcie; Steger-May, Karen; van Dillen, Linda R et al. (2018) Reduced Hip Adduction Is Associated With Improved Function After Movement-Pattern Training in Young People With Chronic Hip Joint Pain. J Orthop Sports Phys Ther 48:316-324
Beleckas, Casey M; Gerull, William; Wright, Melissa et al. (2018) Variability of PROMIS Scores Across Hand Conditions. J Hand Surg Am :
Prudner, Bethany Cheree; Sun, Fangdi; Kremer, Jeffrey Charles et al. (2018) Amino Acid Uptake Measured by [18F]AFETP Increases in Response to Arginine Starvation in ASS1-Deficient Sarcomas. Theranostics 8:2107-2116
Mundt, Filip; Rajput, Sandeep; Li, Shunqiang et al. (2018) Mass Spectrometry-Based Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to PI3K Inhibition in Triple-Negative Breast Cancers. Cancer Res 78:2732-2746
Burclaff, Joseph; Mills, Jason C (2018) Plasticity of differentiated cells in wound repair and tumorigenesis, part I: stomach and pancreas. Dis Model Mech 11:
Meinerz, Kelsey; Beeman, Scott C; Duan, Chong et al. (2018) Bayesian Modeling of NMR Data: Quantifying Longitudinal Relaxation in Vivo, and in Vitro with a Tissue-Water-Relaxation Mimic (Crosslinked Bovine Serum Albumin). Appl Magn Reson 49:3-24
Rocha, Agostinho G; Franco, Antonietta; Krezel, Andrzej M et al. (2018) MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science 360:336-341
Lin, Jonathan B; Sene, Abdoulaye; Santeford, Andrea et al. (2018) Oxysterol Signatures Distinguish Age-Related Macular Degeneration from Physiologic Aging. EBioMedicine 32:9-20

Showing the most recent 10 out of 1244 publications