The goal of the Cancer Imaging and Early Detection Program is to advance cancer research, diagnosis, and management by carrying out novel research using multimodality anatomical and molecular imaging (MI) strategies. This goal will be achieved through the development and application of multimodality imaging strategies to reveal the molecular basis of disease, to develop multiparametric diagnostic tools and to advance effective treatment for cancer. The program comprises of investigators from seven specialty areas: imaging instrumentation/engineering;modeling/biostatistics;chemistry;molecular imaging; cancer biology/proteomics;mouse models/small animal imaging applications in cancer therapy;and clinical oncology. Research by program members has resulted in both new tools for imaging and new insights in cancer biology and responses to therapy. These exciting findings include new methods to image cancer gene therapy;imaging of immune cell trafficking and effective immunotherapies;next-generation of probes for imaging apoptosis/angiogenesis;innovative endoscopic optical imaging strategies;proteomic nanosensors for in vitro diagnostics;advances in instrumentation for small animal imaging;and translation of clinical cancer imaging strategies. The significant expansion of the program in this last two-year period is the foundation for continued growth, in part, through the addition of a new center for early cancer detection, which brings together scientists focused on both in vitro and in vivo diagnostics. The Program adds value to the Center by bringing biologists, chemists, engineers, radiologists, computational scientists and clinical and translational researchers together to solve the hard problems In imaging and address unmet needs in oncology. The 43 program members come from 12 departments in the Schools of Medicine, Engineering and Humanities &Sciences. Members are major participants in one P50 program project, four U54 projects, and two NCI T32 funded postdoctoral training grants. The members are also actively engaged with other cancer centers around the country including the Fred Hutchinson Cancer Research Center and are extending to clinical trials that involve centers beyond the U.S.A (eg. South Africa and India). The leadership is united in its goals for program development to advance cancer imaging. The program currently receives $8.7 million in extramural funding from the NCI and $6.3 million in other NIH research support.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
Ganjoo, Kristen; Hong, Fangxin; Horning, Sandra J et al. (2014) Bevacizumab and cyclosphosphamide, doxorubicin, vincristine and prednisone in combination for patients with peripheral T-cell or natural killer cell neoplasms: an Eastern Cooperative Oncology Group study (E2404). Leuk Lymphoma 55:768-72
Chiou, Shin-Heng; Kim-Kiselak, Caroline; Risca, Viviana I et al. (2014) A conditional system to specifically link disruption of protein-coding function with reporter expression in mice. Cell Rep 7:2078-86
Zhu, Gefei Alex; Danial, Christina; Liu, Andy et al. (2014) Overall and progression-free survival in metastatic basosquamous cancer: a case series. J Am Acad Dermatol 70:1145-6
Caswell, Deborah R; Chuang, Chen-Hua; Yang, Dian et al. (2014) Obligate progression precedes lung adenocarcinoma dissemination. Cancer Discov 4:781-9
Bartroff, Jay; Lai, Tze Leung; Narasimhan, Balasubramanian (2014) A new approach to designing phase I-II cancer trials for cytotoxic chemotherapies. Stat Med 33:2718-35
Kohrt, Holbrook E; Thielens, Ariane; Marabelle, Aurelien et al. (2014) Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies. Blood 123:678-86
DiCarlo, Joseph; Agarwal-Hashmi, Rajni; Shah, Ami et al. (2014) Cytokine and chemokine patterns across 100 days after hematopoietic stem cell transplantation in children. Biol Blood Marrow Transplant 20:361-9
Chang, Serena; Kohrt, Holbrook; Maecker, Holden T (2014) Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother 63:713-9
Ansari, Celina; Tikhomirov, Grigory A; Hong, Su Hyun et al. (2014) Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small 10:566-75, 417
Lavori, Philip W; Dawson, Ree (2014) Introduction to dynamic treatment strategies and sequential multiple assignment randomization. Clin Trials 11:393-399

Showing the most recent 10 out of 24 publications