The Nuclear Receptor Program is a network of 20 NIH funded basic scientists focused on understanding the contribution of nuclear receptor transcription factor and chromatic modifying coregulator function to cancer development. Members have a total of $14,612,144 in peer-reviewed research support, $4,167,979 of which is from NCI and the remainder from other NIH institutes, the Department of Defense, and cancer foundation funds. Members of the Program have a strong record of both intraprogramatic collaboration and interprogramatic interactions with both basic and clinical programs throughout the cancer center. During the last three years, members published 202 peer reviewed manuscripts of which 39% were the result of intraprogrammatic interactions and 34% from interrogrammatic publications. A major goal to identify novel therapeutic targets among members of the nuclear receptor superfamily and nuclear receptor interacting coregulator proteins for prevention of and therapeutic intervention in cancer. To achieve this goal, we have adopted an integrative approach with three central components: 1) nuclear receptor and coregulator discovery and analysis of their mechanisms of regulation of cellular homeostasis, 2) preclinical assessment of their roles in cancer development using genetically manipulated mouse model systems, and 3) A translational component involving interaction with clinical programs to rapidly transfer new information into receptor profiling and assessment of therapeutic potential in human cancers. Major accomplishments include elucidation of a breast cancer cell selective posttranslational code that is responsible for overexpression of the pi60 coactivator I breast cancer cells, SRC-3 in breast cancer cells;identification of a critical role of coactivators SRC-1 and SRC-3 in breast and prostate cancer metastases;discovery of the orphan nuclear receptors, NR4A1 and NR4A3 as novel tumor suppressors of acute myeloid leukemia and discovery of their widespread gene silencing in human AML patients regardless of genetic heterogeneity;and discovery of the orphan COUP-TFII as a potent driver of epithelial tumor associated angiogenesis and metastasis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA125123-06
Application #
8376835
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
6
Fiscal Year
2012
Total Cost
$13,204
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Kundu, S T; Byers, L A; Peng, D H et al. (2016) The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene 35:173-86
Treviño, Lindsey S; Bolt, Michael J; Grimm, Sandra L et al. (2016) Differential Regulation of Progesterone Receptor-Mediated Transcription by CDK2 and DNA-PK. Mol Endocrinol 30:158-72
Gargett, Tessa; Yu, Wenbo; Dotti, Gianpietro et al. (2016) GD2-specific CAR T Cells Undergo Potent Activation and Deletion Following Antigen Encounter but can be Protected From Activation-induced Cell Death by PD-1 Blockade. Mol Ther 24:1135-49
Giudice, Jimena; Loehr, James A; Rodney, George G et al. (2016) Alternative Splicing of Four Trafficking Genes Regulates Myofiber Structure and Skeletal Muscle Physiology. Cell Rep 17:1923-1933
Li, Yiting; Nakka, Manjula; Kelly, Aaron J et al. (2016) p27 Is a Candidate Prognostic Biomarker and Metastatic Promoter in Osteosarcoma. Cancer Res 76:4002-11
Ren, Yi A; Liu, Zhilin; Mullany, Lisa K et al. (2016) Growth Arrest Specific-1 (GAS1) Is a C/EBP Target Gene That Functions in Ovulation and Corpus Luteum Formation in Mice. Biol Reprod 94:44
Oliver, Nora T; Hartman, Christine M; Kramer, Jennifer R et al. (2016) Statin drugs decrease progression to cirrhosis in HIV/HCV co-infected individuals. AIDS :
Aisiku, Imo P; Yamal, Jose-Miguel; Doshi, Pratik et al. (2016) Plasma cytokines IL-6, IL-8, and IL-10 are associated with the development of acute respiratory distress syndrome in patients with severe traumatic brain injury. Crit Care 20:288
Pethő, Zoltán; Tanner, Mark R; Tajhya, Rajeev B et al. (2016) Different expression of β subunits of the KCa1.1 channel by invasive and non-invasive human fibroblast-like synoviocytes. Arthritis Res Ther 18:103
Kwon, Oh-Joon; Zhang, Li; Xin, Li (2016) Stem Cell Antigen-1 Identifies a Distinct Androgen-Independent Murine Prostatic Luminal Cell Lineage with Bipotent Potential. Stem Cells 34:191-202

Showing the most recent 10 out of 683 publications