The Research Center for Auditory and Vestibular Studies (RCAVS), housed in the Department of Otolaryngology at Washington University School of Medicine, is a full service centralized facility that was developed to support the scientific progress of funded research in mission areas of the NIDCD. The Core Center is composed of four individual Research Cores and an Administrative Shell which interact to fulfill the aims of the Center. The areas in which services are offered include: Functional Testing, Histology, Microscopy &Digital Imaging and Clinical &Translational Research. Although core services are primarily designed to assist member projects that constitute the Qualifying Research Base, services are also offered, as available, to non-qualifying projects in NIDCD mission areas as well as outside projects. The RCAVS currently supports 24 basic scientists and 10 clinical/applied scientists. Membership is freely granted to any independent investigator in the local scientific community that conducts research in mission areas of the NIDCD. Our services additionally support outside users that can benefit from the equipment, technology and expertise found within the RCAVS. The Center boasts a Qualified Research Base that is well above the minimum required for application as a P30 Research Core Center.
Specific Aims of the RCAVS include the following: 1) To provide centralized equipment and services for investigators whose research overlaps mission areas of the NIDCD;2) to encourage collaborative efforts, support the development of new research questions by core members and attract new researchers to mission areas of the NIDCD;and 3) to promote translational research via mechanisms designed to enhance scientific interactions and collaborations between basic and clinical scientists. An innovative collaborative arrangement between the three basic science cores provides for the rapid systematic evaluation (function and anatomy) of new mouse models of auditory and vestibular disorders. An innovative no-cost fee structure encourages collaboration with outside investigators, development of new research questions, and attracts new researchers to NIDCD mission areas. The ultimate impact of this application is to facilitate progress in the development of treatments for human disorders of hearing, balance and speech and to serve as a model for a successful translational research program.

Public Health Relevance

The P30 Research Core Center creates centralized resources to facilitate the scientific progress of investigators conducting research in mission areas of the NIDCD. It provides technical assistance, training, and equipment at a level that is not feasible for individual investigators and is designed to promote scientific interaction, collaboration and translational research. Highlighted areas of support include Functional Testing, Histology, Microscopy &Digital Imaging, and Clinical &Translational Research.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Center Core Grants (P30)
Project #
5P30DC004665-14
Application #
8725627
Study Section
Special Emphasis Panel (ZDC1)
Program Officer
Platt, Christopher
Project Start
2000-09-01
Project End
2016-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
14
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Washington University
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Rakszawski, Bernadette; Wright, Rose; Cadieux, Jamie H et al. (2016) The Effects of Preprocessing Strategies for Pediatric Cochlear Implant Recipients. J Am Acad Audiol 27:85-102
Meehan, Daniel T; Delimont, Duane; Dufek, Brianna et al. (2016) Endothelin-1 mediated induction of extracellular matrix genes in strial marginal cells underlies strial pathology in Alport mice. Hear Res 341:100-108
Mulay, Shrikant R; Desai, Jyaysi; Kumar, Santhosh V et al. (2016) Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun 7:10274
Dufek, Brianna; Meehan, Daniel T; Delimont, Duane et al. (2016) Endothelin A receptor activation on mesangial cells initiates Alport glomerular disease. Kidney Int 90:300-10
Kaur, Tejbeer; Zamani, Darius; Tong, Ling et al. (2015) Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion. J Neurosci 35:15050-61
Huh, Sung-Ho; Warchol, Mark E; Ornitz, David M (2015) Cochlear progenitor number is controlled through mesenchymal FGF receptor signaling. Elife 4:
Gehlhausen, Jeffrey R; Park, Su-Jung; Hickox, Ann E et al. (2015) A murine model of neurofibromatosis type 2 that accurately phenocopies human schwannoma formation. Hum Mol Genet 24:1-8
Chen, Shuang; Brunskill, Eric W; Potter, S Steven et al. (2015) Intrinsic Age-Dependent Changes and Cell-Cell Contacts Regulate Nephron Progenitor Lifespan. Dev Cell 35:49-62
de la Puente, Pilar; Muz, Barbara; Gilson, Rebecca C et al. (2015) 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomaterials 73:70-84
Gasser Rutledge, Krysta L; Prasad, Kumar G; Emery, Kara R et al. (2015) Short-term Peripheral Auditory Effects of Cranial Irradiation: A Mouse Model. Ann Otol Rhinol Laryngol 124:903-10

Showing the most recent 10 out of 142 publications