Many Monell scientists conduct studies with animals and need to characterize their chemosensory phenotypes. They will benefit from the Phenotyping Core in the following ways. 1) This Core will provide a centralized resource of equipment and supplies that will receive dedicated support and regular maintenance. The Core will also centralize labor-intensive tasks, such as making equipment for preference tests. Studies will be designed and/or conducted by Core personnel with specialized expertise in phenotyping techniques. This will be more efficient than replicating these techniques and personnel in individual laboratories. Regular use and service will ensure that equipment is always operational and available for experimentation. 2) The Core will provide access to equipment and facilities (e.g., LabMaster, surgical facility) that are not practical to maintain in individual laboratories. The Core will offer a range of services and experimental designs that are not available in individual laboratories. 3) Scientists with no experience in animal phenotyping will receive training and will have access to equipment and expertise of the Core. This will facilitate their research and help them to collect preliminary data for grant applications. 4) This Research Core will be an integral component of the Core Center. Interactions between the Phenotyping Core and other Research Cores will facilitate collaborative and interdisciplinary studies that are often not feasible for individual laboratories. For example, the Phenotyping and Histology Cores will be used to characterize genetically engineered mice generated from constructs produced using the Molecular Biology Core. In forward genetics studies, the same animals will be examined using the Phenotyping and Genotyping Cores, and the data obtained will be used for chromosomal mapping studies. We estimate that 9 of the 13 R01 grants in our Research Base will use services provided by this Core at moderate to extensive levels. We also expect that 11 current faculty research groups at Monell will use the services provided by this Core. As a result, the Phenotyping Core will improve the efficiency and quality of animal model studies at the Center, accelerate existing NIDCD-funded projects, and advance translation of the results into benefits for public health.

Agency
National Institute of Health (NIH)
Type
Center Core Grants (P30)
Project #
5P30DC011735-04
Application #
8681199
Study Section
Special Emphasis Panel (ZDC1)
Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Monell Chemical Senses Center
Department
Type
DUNS #
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Yamaguchi, Tatsuya; Yamashita, Junpei; Ohmoto, Makoto et al. (2014) Skn-1a/Pou2f3 is required for the generation of Trpm5-expressing microvillous cells in the mouse main olfactory epithelium. BMC Neurosci 15:13
Tordoff, Michael G; Ellis, Hillary T; Aleman, Tiffany R et al. (2014) Salty taste deficits in CALHM1 knockout mice. Chem Senses 39:515-28
Tordoff, Michael G; Downing, Arnelle; Voznesenskaya, Anna (2014) Macronutrient selection by seven inbred mouse strains and three taste-related knockout strains. Physiol Behav 135:49-54
Kokrashvili, Zaza; Yee, Karen K; Ilegems, Erwin et al. (2014) Endocrine taste cells. Br J Nutr 111 Suppl 1:S23-9
Feng, Pu; Huang, Liquan; Wang, Hong (2014) Taste bud homeostasis in health, disease, and aging. Chem Senses 39:3-16
Parker, M Rockwell; Feng, Dianna; Chamuris, Brianna et al. (2014) Expression and nuclear translocation of glucocorticoid receptors in type 2 taste receptor cells. Neurosci Lett 571:72-7
Mennella, Julie A; Reed, Danielle R; Roberts, Kristi M et al. (2014) Age-related differences in bitter taste and efficacy of bitter blockers. PLoS One 9:e103107
van Valkenburgh, Blaire; Pang, Benison; Bird, Deborah et al. (2014) Respiratory and olfactory turbinals in feliform and caniform carnivorans: the influence of snout length. Anat Rec (Hoboken) 297:2065-79
Mennella, Julie A; Finkbeiner, Susana; Lipchock, Sarah V et al. (2014) Preferences for salty and sweet tastes are elevated and related to each other during childhood. PLoS One 9:e92201
Adappa, Nithin D; Zhang, Zi; Palmer, James N et al. (2014) The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. Int Forum Allergy Rhinol 4:3-7

Showing the most recent 10 out of 33 publications