The overall objective of the Viral Vector and Transgenic Mouse Core is to provide Diabetes Research Center affiliate investigators at the University of Washington with state-of-the-art vectors necessary to overexpress, knockdown, knockout, or otherwise alter expression of RNAs and proteins of interest in cultured cells, isolated tissues, and animals. The Core has considerably evolved since the last competitive renewal. New services to generate genetically engineered mice have been added, and under-utilized and standard molecular biology methods that are now increasingly performed in individual investigator's labs have been removed.
The specific aims of the Core are to provide the following services to affiliate investigators: (1) Production of lentiviral, adenoviral and retroviral vectors for use in animals, tissues, and cells; (2) Production of vectors for generation of transgenic, knockout, and knockin mice; (3) Specialized molecular biology methods not routinely performed in affiliate investigators' laboratories; (4) Cost-effective production of genetically engineered mice through the University of Washington Transgenic Resources Program; and (5) Consultation and training.. The Core has been highly productive in the current funding period and has added new services that are expected to significantly increase productivity and usability for Diabetes Research Center affiliate investigators to meet the Center's goal to enhance research in diabetes, obesity and related disorders in the Greater Seattle area and beyond.

Public Health Relevance

A cornerstone of diabetes research is the use of viral vectors to modify expression of specific proteins and genetically engineered mice for the study of diabetes pathogenesis, treatment strategies, and diabetic complications. The services provided by the Viral Vector and Transgenic Mouse Core fulfill this need.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
4P30DK017047-40
Application #
9002033
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2015-12-01
Budget End
2016-11-30
Support Year
40
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Mietlicki-Baase, Elizabeth G; Liberini, Claudia G; Workinger, Jayme L et al. (2018) A vitamin B12 conjugate of exendin-4 improves glucose tolerance without associated nausea or hypophagia in rodents. Diabetes Obes Metab 20:1223-1234
Gordon, Sharona E; Munari, Mika; Zagotta, William N (2018) Visualizing conformational dynamics of proteins in solution and at the cell membrane. Elife 7:
Olivo, Robert E; Davenport, Clemontina A; Diamantidis, Clarissa J et al. (2018) Obesity and synergistic risk factors for chronic kidney disease in African American adults: the Jackson Heart Study. Nephrol Dial Transplant 33:992-1001
Uusitalo, Ulla; Lee, Hye-Seung; Andrén Aronsson, Carin et al. (2018) Early Infant Diet and Islet Autoimmunity in the TEDDY Study. Diabetes Care 41:522-530
Brault, Michelle; Olsen, Tayla M; Martinez, Jennifer et al. (2018) Intracellular Nucleic Acid Sensing Triggers Necroptosis through Synergistic Type I IFN and TNF Signaling. J Immunol 200:2748-2756
Hofsteen, Peter; Robitaille, Aaron Mark; Strash, Nicholas et al. (2018) ALPK2 Promotes Cardiogenesis in Zebrafish and Human Pluripotent Stem Cells. iScience 2:88-100
Hippe, Daniel S; Phan, Binh An P; Sun, Jie et al. (2018) Lp(a) (Lipoprotein(a)) Levels Predict Progression of Carotid Atherosclerosis in Subjects With Atherosclerotic Cardiovascular Disease on Intensive Lipid Therapy: An Analysis of the AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/ Arterioscler Thromb Vasc Biol 38:673-678
Subramanian, Savitha; Goodspeed, Leela; Wang, Shari et al. (2018) Deficiency of Invariant Natural Killer T Cells Does Not Protect Against Obesity but Exacerbates Atherosclerosis in Ldlr-/- Mice. Int J Mol Sci 19:
James, Eddie A; Pietropaolo, Massimo; Mamula, Mark J (2018) Immune Recognition of ?-Cells: Neoepitopes as Key Players in the Loss of Tolerance. Diabetes 67:1035-1042
Liese, Angela D; Ma, Xiaonan; Ma, Xiaoguang et al. (2018) Dietary quality and markers of inflammation: No association in youth with type 1 diabetes. J Diabetes Complications 32:179-184

Showing the most recent 10 out of 1296 publications