The primary goals and function of the MDRC Animal Phenotyping Core are to provide expert consultation, state-of-the art equipment and technical services that are critical for the detailed metabolic phenotyping of rodent models of diabetes and obesity. The goals of the Animal Phenotyping Core are to: 1. Provide expert consultation and training to MDRC investigators regarding phenotyping strategies and experimental design to characterize rodent models of diabetes and related metabolic diseases. 2. Provide MDRC investigators with the capability for sophisticated, standardized metabolic phenotyping of rodent models relevant to diabetes, obesity and associated metabolic diseases. 3. Provide expert aid in the analysis and interpretation of data arising from services offered in the APC. 4. Develop new techniques and acquire new technologies for rodent, whole animal metabolic phenotyping in response to the needs of MDRC investigators. The Animal Phenotyping Core provides a comprehensive, convenient and cost-effective menu of platforms that includes: a) Glucose homeostasis and metabolic clamp studies in rats and mice, b) Whole animal metabolic assessment. The CLAMS apparatus and other systems are used to examine metabolic rate, respiratory quotient, food consumption, and locomotor activity in rodent models, c) Body composition is measured by NMR. d) Radiotelemetric monitoring. Systems are in place for remote, chronic monitoring of cardiovascular parameters and core body temperature in rats and diurnal running wheel behavior in mice, e) Ingestive behavior. Meal microstructure and reinforcing properties of dietary constituents are measured in either home-cage or operant-conditloning paradigms, f) Automated blood/body fluids sampling and infusion in freely behaving, unstressed rodents. Altogether, the Animal Phenotyping Core provides consultation and advice on experimental design, reliable data from a range of validated assays and essential data analysis relevant to the needs of multiple investigators in the MDRC

Public Health Relevance

Research conducted by the Animal Phenotyping Core is relevant to public health because it will increase our understanding of the events that underlie the development of diabetes and Its complications, and hence will facilitate the development of improved diagnostic, prevention and treatment strategies. The Core also provides preclinical analyses in rodent models to determine the efficacy of potential new therapies.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O2))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Ann Arbor
United States
Zip Code
Hu, Fang; Knoedler, Joseph R; Denver, Robert J (2016) A Mechanism to Enhance Cellular Responsivity to Hormone Action: Krüppel-Like Factor 9 Promotes Thyroid Hormone Receptor-β Autoinduction During Postembryonic Brain Development. Endocrinology 157:1683-93
Taylor, Veronica G; Bommarito, Paige A; Tesmer, John J G (2016) Structure of the Regulator of G Protein Signaling 8 (RGS8)-Gαq Complex: MOLECULAR BASIS FOR Gα SELECTIVITY. J Biol Chem 291:5138-45
Hrycaj, Steven M; Wellik, Deneen M (2016) Hox genes and evolution. F1000Res 5:
Wong, Jenny-Marie T; Malec, Paige A; Mabrouk, Omar S et al. (2016) Benzoyl chloride derivatization with liquid chromatography-mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J Chromatogr A 1446:78-90
Grinias, James P; Wong, Jenny-Marie T; Kennedy, Robert T (2016) Repeatability of gradient ultrahigh pressure liquid chromatography-tandem mass spectrometry methods in instrument-controlled thermal environments. J Chromatogr A 1461:42-50
Allen, Susan J; Garcia-Galiano, David; Borges, Beatriz C et al. (2016) Leptin receptor null mice with reexpression of LepR in GnRHR expressing cells display elevated FSH levels but remain in a prepubertal state. Am J Physiol Regul Integr Comp Physiol 310:R1258-66
Airik, Rannar; Schueler, Markus; Airik, Merlin et al. (2016) A FANCD2/FANCI-Associated Nuclease 1-Knockout Model Develops Karyomegalic Interstitial Nephritis. J Am Soc Nephrol 27:3552-3559
Fitzgerald, James T; Funnell, Martha M; Anderson, Robert M et al. (2016) Validation of the Revised Brief Diabetes Knowledge Test (DKT2). Diabetes Educ 42:178-87
Cras-Méneur, Corentin; Elghazi, Lynda; Fort, Patrice et al. (2016) Noninvasive in vivo imaging of embryonic β-cell development in the anterior chamber of the eye. Islets 8:35-47
Korot, Edward; Comer, Grant; Steffens, Timothy et al. (2016) Algorithm for the Measure of Vitreous Hyperreflective Foci in Optical Coherence Tomographic Scans of Patients With Diabetic Macular Edema. JAMA Ophthalmol 134:15-20

Showing the most recent 10 out of 1264 publications