Translational Diagnostics Core The long-term goal of the Washington University Diabetes Research Center (DRC) Translational Diagnostics Core is to improve human health by supporting clinical laboratory testing services for research in diabetes mellitus and related metabolic disorders. Most Core analyses are performed on samples from human studies and some are performed on samples from animal models. The Core provides expert consultation to investigators so that the most appropriate tests can be chosen while taking cost and number of samples into consideration. In addition to quantification of classic metabolic analytes relevant to diabetes, such as insulin and glucagon, the core also offers assays for diabetes and metabolism relevant molecules, such as adiponectin and TNF?. For some special analytes, the Core maintains contracts with Quest Diagnostics and Mayo Medical Laboratories, so that these analyses can be performed at substantially lower cost to DRC members. Development of new research tests is another important activity of the Translational Diagnostics Core, which makes available to DRC members analyses with enhanced sensitivity and accuracy that incorporate the latest advances in diabetes and metabolism research. The Translational Diagnostics Core provides efficient, high quality diagnostic services promoting the translation of basic scientific discoveries for the prevention, treatment and cure of diabetes and its complications. .

Public Health Relevance

Translational Diagnostics Core The Washington University Diabetes Research Center Translational Diagnostics Core performs efficient clinical laboratory testing to support research in the field of diabetes mellitus. The primary goals of the Core are to reduce the high costs of specialty testing and to provide outstanding quality control so that reliable diabetes- related tests are widely available to investigators focused on the pathogenesis, treatment and cure of diabetes and related metabolic disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020579-42
Application #
9657022
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
42
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Rusconi, B; Jiang, X; Sidhu, R et al. (2018) Gut Sphingolipid Composition as a Prelude to Necrotizing Enterocolitis. Sci Rep 8:10984
Chen, Yana; McCommis, Kyle S; Ferguson, Daniel et al. (2018) Inhibition of the Mitochondrial Pyruvate Carrier by Tolylfluanid. Endocrinology 159:609-621
Zhang, Yan; Rohatgi, Nidhi; Veis, Deborah J et al. (2018) PGC1? Organizes the Osteoclast Cytoskeleton by Mitochondrial Biogenesis and Activation. J Bone Miner Res 33:1114-1125
Xu, Wei; Mukherjee, Sumit; Ning, Yu et al. (2018) Cyclopropane fatty acid synthesis affects cell shape and acid resistance in Leishmania mexicana. Int J Parasitol 48:245-256
Hughes, Jing W; Bao, Yicheng K; Salam, Maamoun et al. (2018) Late-Onset T1DM and Older Age Predict Risk of Additional Autoimmune Disease. Diabetes Care :
Zhang, Xiangyu; Evans, Trent D; Jeong, Se-Jin et al. (2018) Classical and alternative roles for autophagy in lipid metabolism. Curr Opin Lipidol 29:203-211
Ban, Norimitsu; Lee, Tae Jun; Sene, Abdoulaye et al. (2018) Disrupted cholesterol metabolism promotes age-related photoreceptor neurodegeneration. J Lipid Res 59:1414-1423
Ban, Norimitsu; Lee, Tae Jun; Sene, Abdoulaye et al. (2018) Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss. JCI Insight 3:
Mayer, Allyson L; Zhang, Yiming; Feng, Emily H et al. (2018) Enhanced Hepatic PPAR? Activity Links GLUT8 Deficiency to Augmented Peripheral Fasting Responses in Male Mice. Endocrinology 159:2110-2126
Weber, Kassandra J; Sauer, Madeline; He, Li et al. (2018) PPAR? Deficiency Suppresses the Release of IL-1? and IL-1? in Macrophages via a Type 1 IFN-Dependent Mechanism. J Immunol 201:2054-2069

Showing the most recent 10 out of 654 publications