The Hormone Assay and Analytical Services Core (HAASC) provides assistance to investigators in the measurement of hormones, amino acids ( concentration and specific activity), glucose enrichment, lipids, nucleotides, and markers of oxidative stress in biologic fluids and tissue samples. The core provides space, equipment and personnel that performs sample analysis and method development. Investigators pay a fee for service that covers the cost of regents, supplies, a percentage of personnel salary and pro-rated service contracts. Over the last grant cycle this core has dramatically evolved. With support from the institution the core has purchased equipment that will lower overall cost and decrease turnaround time for our standard high throughput assays and are continuing to offer cost effective new hormone assays to our investigators. The core has developed NMR assays to assess the enrichment of glucose (C2/C5), which is a marker of gluconeogenesis. We have expanded the scope of our services as the needs of VDRTC members change. The core assayed over 30,000 samples in the past year for 32 Vanderbilt investigators and 7 non-Vanderbilt investigators. Over the past grant cycle it provided data to support over 150 publications. The HAASC is jointly supported by the VDRTC and the NIDDK-funded Mouse Metabolic Phenotyping Center. This cooperative arrangement allows the core to offer a wide range of services in a non-overlapping, cost efficient manner. The core is part of the Vanderbilt Core Ordering &Reporting Enterprise Systemtm, which provides an efficient billing system and oversight and governance for the core. The Hormone Assay and Analytical Services Core, in operation for more than 30 years, continues to provide essential services that support the research of DRTC-affiliated investigators in the next funding cycle.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020593-35
Application #
8469486
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
35
Fiscal Year
2013
Total Cost
$211,509
Indirect Cost
$75,927
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
King-Morris, Kelli R; Deger, Serpil Muge; Hung, Adriana M et al. (2016) Measurement and Correlation of Indices of Insulin Resistance in Patients on Peritoneal Dialysis. Perit Dial Int 36:433-41
Mani, Bharath K; Osborne-Lawrence, Sherri; Vijayaraghavan, Prasanna et al. (2016) β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals. J Clin Invest 126:3467-78
Gamboa, Jorge L; Billings 4th, Frederic T; Bojanowski, Matthew T et al. (2016) Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease. Physiol Rep 4:
(2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1-222
Crowder, Spencer W; Balikov, Daniel A; Boire, Timothy C et al. (2016) Copolymer-Mediated Cell Aggregation Promotes a Proangiogenic Stem Cell Phenotype In Vitro and In Vivo. Adv Healthc Mater 5:2866-2871
Beavers, Kelsey R; Werfel, Thomas A; Shen, Tianwei et al. (2016) Porous Silicon and Polymer Nanocomposites for Delivery of Peptide Nucleic Acids as Anti-MicroRNA Therapies. Adv Mater 28:7984-7992
Conrad, Elizabeth; Dai, Chunhua; Spaeth, Jason et al. (2016) The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells. Am J Physiol Endocrinol Metab 310:E91-E102
Shaffer, Carrie L; Good, James A D; Kumar, Santosh et al. (2016) Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens. MBio 7:e00221-16
Delong, Thomas; Wiles, Timothy A; Baker, Rocky L et al. (2016) Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351:711-4
Leamy, Alexandra K; Hasenour, Clinton M; Egnatchik, Robert A et al. (2016) Knockdown of triglyceride synthesis does not enhance palmitate lipotoxicity or prevent oleate-mediated rescue in rat hepatocytes. Biochim Biophys Acta 1861:1005-14

Showing the most recent 10 out of 536 publications