The primary objectives of the Analytic Core are to: ? provide access to high-quality, cost-effective laboratory testing for Affiliate Investigators (Als) ? provide consultation concerning laboratory testing ? develop, evaluate, and improve laboratory tests in human and animal specimens A secondary objective is to provide training for young investigators in method development and quality control. The Analytic Core of the NORC will continue to provide access to a wide array of comprehensive, state-of-the-art laboratory services for NORC Als in a highly cost-effective fashion. This is done by developing specialized tests performed directly by NORC technologists (direct services) and by facilitating laboratory services in various parts of the clinical laboratories in the Department of Laboratory Medicine and in other laboratories at the University of Washington (UW) that provide laboratory services (indirect services). By referring testing to various laboratories within the UW while handling logistics for those referrals, the Analytic Core provides comprehensive services in a manner that is as seamless as possible for Als, and broader in scope than would be cost-effective or possible for the Analytic Core working in isolation and performing only direct testing. The Core is a service facility, with the main mission to provide laboratory testing requested by Als. This involves responding to direct requests for assays as well as anticipating future needs and research directions. Faculty and technologists frequently consult with Als, direct research, and train young investigators using Analytic Core facilities. As has occurred during the past several years, the Core has adapted to the needs of the Als, has incorporated and is continuing to adapt to new technologies, and performs developmental research to set up and/or facilitate access to analyses. Training opportunities have helped two of our trainees advance into junior faculty positions where they continue basic science research in nutrition and inflammation. During the current funding cycle, a major focus ofthe Analytic Core has been development of novel targeted assays that use liquid chromatography-tandem mass spectrometry (LC-MS/MS). These efforts were mounted in response to the changing needs of the Als and have supported large studies in well-characterized populations. The Core has also continued its focus on high-quality assays for animal-derived specimens and continues its development of targeted assays for metabolites in tissues. To provide Als with access to cutting edge technology in discovery metabolomics and micro-RNA analyses, in response both to requests of current Als and anticipated future requests, we have developed a new Discovery Metabolomics Subcore. The major changes in the Core are: ? Development of high-throughput targeted proteomic and metabolomic assays ? Establishment of a Discovery Metabolomics Subcore

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK035816-27
Application #
8510635
Study Section
Special Emphasis Panel (ZDK1-GRB-2)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
27
Fiscal Year
2013
Total Cost
$195,533
Indirect Cost
$67,880
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Anderson, Lindsey J; Tamayose, Jamie M; Garcia, Jose M (2018) Use of growth hormone, IGF-I, and insulin for anabolic purpose: Pharmacological basis, methods of detection, and adverse effects. Mol Cell Endocrinol 464:65-74
Han, Seung Jin; Boyko, Edward J; Kim, Soo Kyung et al. (2018) Association of Thigh Muscle Mass with Insulin Resistance and Incident Type 2 Diabetes Mellitus in Japanese Americans. Diabetes Metab J 42:488-495
Wander, Pandora L; Hayashi, Tomoshige; Sato, Kyoko Kogawa et al. (2018) Design and validation of a novel estimator of visceral adipose tissue area and comparison to existing adiposity surrogates. J Diabetes Complications 32:1062-1067
Bornfeldt, Karin E; Kramer, Farah; Batorsky, Anna et al. (2018) A Novel Type 2 Diabetes Mouse Model of Combined Diabetic Kidney Disease and Atherosclerosis. Am J Pathol 188:343-352
Haenisch, Michael; Treuting, Piper M; Brabb, Thea et al. (2018) Pharmacological inhibition of ALDH1A enzymes suppresses weight gain in a mouse model of diet-induced obesity. Obes Res Clin Pract 12:93-101
Bentsen, Marie Aare; Mirzadeh, Zaman; Schwartz, Michael W (2018) Revisiting How the Brain Senses Glucose-And Why. Cell Metab :
Faber, Chelsea L; Matsen, Miles E; Velasco, Kevin R et al. (2018) Distinct Neuronal Projections From the Hypothalamic Ventromedial Nucleus Mediate Glycemic and Behavioral Effects. Diabetes 67:2518-2529
Goh, Charlene E; Mooney, Stephen J; Siscovick, David S et al. (2018) Medical facilities in the neighborhood and incidence of sudden cardiac arrest. Resuscitation 130:118-123
Subramanian, Savitha; Goodspeed, Leela; Wang, Shari et al. (2018) Deficiency of Invariant Natural Killer T Cells Does Not Protect Against Obesity but Exacerbates Atherosclerosis in Ldlr-/- Mice. Int J Mol Sci 19:
Mooney, Stephen J; Lemaitre, Rozenn N; Siscovick, David S et al. (2018) Neighborhood food environment, dietary fatty acid biomarkers, and cardiac arrest risk. Health Place 53:128-134

Showing the most recent 10 out of 601 publications