This application is for the competitive renewal of the Digestive Diseases Research Core Center (DDRCC) at the University of Chicago which has been in existence since 1990. The overarching theme of this DDRCC is the study of inflammatory bowel diseases (IBD) and IBD-related areas, including the immunology, microbiology, and genetics of Gl inflammatory disorders. Over the past funding cycle, the leadership, administrative structure, and research base of the DDRCC have provided a constancy that has been conducive to the development of robust and interactive networks among DDRCC members. The research base is highly multidisciplinary and currently has an annual total direct cost of $11.6 million, of which 40% or $4.65 million is supported by NIDDK. This amount is slightly greater than that reported for the last competitive renewal. The level of scholarship continues to be outstanding where over 40% of the resulting publications involve shared authorships among DDRCC members. The Pilot and Feasibility program has successfully promoted the development of new investigators and attracted established scientists from other fields to the study of IBD. The novelty and merits of their projects have led to a very high success rate in obtaining subsequent extramural funding. The enrichment program has provided continuing education and training for DDRCC members and, through its interactive programs, several new programmatic initiatives have emerged. With the rapid advances in the field and the emergence of new technologies, the DDRCC has successfully anticipated the needs and activities of DDRCC investigators. The Integrated Translational core (replacing the clinical component) has become a major underpinning of the DDRCC, linking clinical and basic research and creating unprecedented opportunities for collaborative translational research. The Host-Microbe core (formerly the Cell Biology core) provides a wide range of experimental systems to understand host-microbe interactions, including gnotobiotic mouse technology and new generation molecular approaches for studying the enteric microbiome. The Genomics and Molecular Engineering and Tissue and Cell Analysis Cores have also evolved to provide cutting edge technologies applicable to human-based and experimental research. In summary, the DDRCC has proactively promoted interaction and collaboration among its members. Through its cost-effective, enabling technologies and services, the DDRCC has been a major factor in the advancement of scholarship and discovery in IBD and digestive diseases at the University of Chicago.

Public Health Relevance

The Digestive Diseases Research Core Center (DDRCC) at the University of Chicago has as its overarching theme the study of inflammatory bowel diseases (IBD) and IBD-related areas, including the immunology,microbiology, and genetics of Gl inflammatory disorders. Through its anticipation of future needs and the development of cost-effective, enabling technologies and services, the DDRCC has been a major factor in the advancement of scholarship and discovery in IBD and digestive diseases at the University of Chicago.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK042086-22
Application #
8231551
Study Section
Special Emphasis Panel (ZDK1-GRB-8 (M1))
Program Officer
Podskalny, Judith M,
Project Start
1996-12-01
Project End
2015-11-30
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
22
Fiscal Year
2012
Total Cost
$1,170,000
Indirect Cost
$420,000
Name
University of Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
An, Gary; Kulkarni, Swati (2015) An agent-based modeling framework linking inflammation and cancer using evolutionary principles: description of a generative hierarchy for the hallmarks of cancer and developing a bridge between mechanism and epidemiological data. Math Biosci 260:16-24
Wu, Shaoping; Zhang, Yong-Guo; Lu, Rong et al. (2015) Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut 64:1082-94
Jin, H R; Liao, Y; Li, X et al. (2014) Anticancer compound Oplopantriol A kills cancer cells through inducing ER stress and BH3 proteins Bim and Noxa. Cell Death Dis 5:e1190
Lu, R; Wu, S; Zhang, Y-G et al. (2014) Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis 3:e105
McDonald, Benjamin D; Bunker, Jeffrey J; Ishizuka, Isabel E et al. (2014) Elevated T cell receptor signaling identifies a thymic precursor to the TCR??(+)CD4(-)CD8?(-) intraepithelial lymphocyte lineage. Immunity 41:219-29
Li, Yan Chun (2014) Discovery of vitamin D hormone as a negative regulator of the renin-angiotensin system. Clin Chem 60:561-2
Chuang, Alice Y; Chuang, Jim C; Zhai, Zili et al. (2014) NOD2 expression is regulated by microRNAs in colonic epithelial HCT116 cells. Inflamm Bowel Dis 20:126-35
Leone, Vanessa A; Cham, Candace M; Chang, Eugene B (2014) Diet, gut microbes, and genetics in immune function: can we leverage our current knowledge to achieve better outcomes in inflammatory bowel diseases? Curr Opin Immunol 31:16-23
Evans, Christian C; LePard, Kathy J; Kwak, Jeff W et al. (2014) Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One 9:e92193
Jabri, Bana; Chen, Xi; Sollid, Ludvig M (2014) How T cells taste gluten in celiac disease. Nat Struct Mol Biol 21:429-31

Showing the most recent 10 out of 502 publications