The Genomic and Molecular Engineering (GME) Core of the DDRCC provides cutting-edge technologies for the analysis and manipulation of the genetic material. These new technologies empower DDRCC members to pinpoint and characterize genetic factors that influence the development and course of digestive diseases and to dissect gene functions In important pathways relevant to digestive diseases. The GME is a new Core, restructured from the former Molecular Biology and Biochemistry Core. The GME Core divided into two components. The Genotype Analysis component offers sen/ices relating to the genetic analysis of patient samples. The services of the Genotype Analysis component Include (1) customized single nucleotide polymorphism (SNP) genotyping based on the Sequenom Massanray genotyping platfonn, (2) standard SNP genotyping panels for high-Interest genes, (3) ultra-high throughput DNA sequence analysis for genotyping, (4) other genotype analysis methods (such as TaqMan), (5) DNA preparation, and (6) statistical genetics support. The Genetic Engineering component offers services relating to the manipulation of genes in cellular and organismal model systems. The services ofthe Genetic Engineering component include (1) somatic cell genetic manipulation of genes using homologous recombination to knock in or knock out mutations, (2) recombineering technologies to manipulate large DNA segments in bacterial artificial chromosomes, (3) the construction of gene expression constructs using lentiviral vectors for ectopic expression or silencing of genes, (4) support for realtime PCR, and (5) support for the Odyssey image analysis system. The GME Core supports members for genotype analysis and genetic engineering experiments by supporting labor cost, providing discounts for reagents, and training members in new technologies. The Administrative Directors of the GME Core, Drs. Nathan Ellis and David Boone, oversee the operations of the respective components. Directors are responsible for ensuring proper scientific direction and efficient use of services and facilities of the component resources. Usage of the GME Core rapidly increased from start-up because of substantial cost savings, relevance, and high quality of services and resources, and it is anticipated usage will grow substantially during the next cycle of this Grant. Each of the Components offers training of new and established investigators unfamiliar with the supported experimental approaches. The GME Core has helped to foster multidisciplinary collaborations and promote productive exchanges brought about by sharing of resources

Public Health Relevance

The cutting-edge technological services provided by the Core facilitates the genetic analysis and characterization of genes that are important to the development and course of digestive diseases, including inflammatory bowel disease and colorectal cancer.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Chicago
United States
Zip Code
An, Gary; Kulkarni, Swati (2015) An agent-based modeling framework linking inflammation and cancer using evolutionary principles: description of a generative hierarchy for the hallmarks of cancer and developing a bridge between mechanism and epidemiological data. Math Biosci 260:16-24
Wu, Shaoping; Zhang, Yong-Guo; Lu, Rong et al. (2015) Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut 64:1082-94
Jin, H R; Liao, Y; Li, X et al. (2014) Anticancer compound Oplopantriol A kills cancer cells through inducing ER stress and BH3 proteins Bim and Noxa. Cell Death Dis 5:e1190
Lu, R; Wu, S; Zhang, Y-G et al. (2014) Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis 3:e105
McDonald, Benjamin D; Bunker, Jeffrey J; Ishizuka, Isabel E et al. (2014) Elevated T cell receptor signaling identifies a thymic precursor to the TCR??(+)CD4(-)CD8?(-) intraepithelial lymphocyte lineage. Immunity 41:219-29
Li, Yan Chun (2014) Discovery of vitamin D hormone as a negative regulator of the renin-angiotensin system. Clin Chem 60:561-2
Chuang, Alice Y; Chuang, Jim C; Zhai, Zili et al. (2014) NOD2 expression is regulated by microRNAs in colonic epithelial HCT116 cells. Inflamm Bowel Dis 20:126-35
Leone, Vanessa A; Cham, Candace M; Chang, Eugene B (2014) Diet, gut microbes, and genetics in immune function: can we leverage our current knowledge to achieve better outcomes in inflammatory bowel diseases? Curr Opin Immunol 31:16-23
Evans, Christian C; LePard, Kathy J; Kwak, Jeff W et al. (2014) Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One 9:e92193
Jabri, Bana; Chen, Xi; Sollid, Ludvig M (2014) How T cells taste gluten in celiac disease. Nat Struct Mol Biol 21:429-31

Showing the most recent 10 out of 502 publications