The Immunology Core will be co-directed by Andrew Luster and Shiv Pillai. A variety of services will be provided by the Core. These include a number of novel and powerful approaches that can be applied to human immunology, for which the Core offers protocols, education, and bioinformatics analysis. In addition to these more innovative approaches, the Core also continues to provide access to established technologies such as high-speed cell sorting and cytokine assays. The services are organized into three major categories: (1) education and training, (2) routine immunology tools, and (3) specialized immunology services. By assisting investigators in developing assays and offering access to both standard techniques and a number of newly developing, powerful immunologic techniques, this core is fundamentally necessary for a number of studies pursued by CSIBD investigators and advanced trainees ready to emerge as independent investigators.
The specific aims of Immunology Core are to (1) provide CSIBD members with access to immunological resources that would otherwise be cost-prohibitive to individual researchers; (2) offer CSIBD investigators access to cutting-edge immunological techniques that are at the forefront of immunology research; and (3) promote the development of junior investigators and foster collaborations by providing a connection point between investigators of varying research approaches.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK043351-28
Application #
9399649
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2018-01-01
Budget End
2018-12-31
Support Year
28
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
Qu, Chen; Zheng, Dandan; Li, Sai et al. (2018) Tyrosine kinase SYK is a potential therapeutic target for liver fibrosis. Hepatology :
Simon, Tracey G; King, Lindsay Y; Chong, Dawn Q et al. (2018) Diabetes, metabolic comorbidities, and risk of hepatocellular carcinoma: Results from two prospective cohort studies. Hepatology 67:1797-1806
Borren, Nienke Z; Conway, Grace; Garber, John J et al. (2018) Differences in Clinical Course, Genetics, and the Microbiome Between Familial and Sporadic Inflammatory Bowel Diseases. J Crohns Colitis 12:525-531
Battistone, Maria A; Nair, Anil V; Barton, Claire R et al. (2018) Extracellular Adenosine Stimulates Vacuolar ATPase-Dependent Proton Secretion in Medullary Intercalated Cells. J Am Soc Nephrol 29:545-556
Imhann, Floris; Vich Vila, Arnau; Bonder, Marc Jan et al. (2018) Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67:108-119
Chandradas, Sajiv; Khalili, Hamed; Ananthakrishnan, Ashwin et al. (2018) Does Obesity Influence the Risk of Clostridium difficile Infection Among Patients with Ulcerative Colitis? Dig Dis Sci 63:2445-2450
Luther, Jay; Gala, Manish; Patel, Suraj J et al. (2018) Loss of Response to Anti-Tumor Necrosis Factor Alpha Therapy in Crohn's Disease Is Not Associated with Emergence of Novel Inflammatory Pathways. Dig Dis Sci 63:738-745
Graham, Daniel B; Luo, Chengwei; O'Connell, Daniel J et al. (2018) Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes. Nat Med 24:1762-1772
Schirmer, Melanie; Franzosa, Eric A; Lloyd-Price, Jason et al. (2018) Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol 3:337-346
Cheung, Pui W; Terlouw, Abby; Janssen, Sam Antoon et al. (2018) Inhibition of non-receptor tyrosine kinase Src induces phosphoserine 256-independent aquaporin-2 membrane accumulation. J Physiol :

Showing the most recent 10 out of 1166 publications