The overall goal of the Center for the Study of Inflammatory Bowel Disease (CSIBD) is to promote and facilitate research that will yield insight into the causes and pathogenesis of IBD and lead to improved therapeutic approaches. This overarching objective remains unchanged since the inception of the CSIBD in 1991 and has guided the Center through substantial growth and expansion. The research base is made up of 111 scientists with $48.7 million in digestive disease-related research support. Organizing these investigators by areas of focus, we divide the CSIBD into six central themes. Our goal of understanding human IBD is accomplished using six entry points: (1) genetics, (2) microbial interactions, (3) barrier function and epithelial cell biology, (4) innate and adaptive immunity, (5) therapeutics, and (6) systems biology and signal transduction. Clinicians, scientists, and engineers are embedded in each theme. A central priority of the CSIBD is to bring together researchers from these various approaches and to provide an intellectual nexus for these individuals to find common interests in understanding and treating IBD. This is accomplished through several routes. First, the five biomedical cores offer state-of-the-art resources and expertise from leaders in (1) Human Genetics and Microbiome, (2) Immunology, (3) Morphology, and (4) Genetic Animal Models. In addition to offering guidance and access to technologies, core directors serve as connection points between investigators, facilitating collaborations. Similarly, the (5) Clinical Core aids the community through access to thousands of patient samples while serving as a hub for interactions between clinicians and basic researchers. Operating independently of these cores, the close relationship between the CSIBD and the Broad Institute allows further access to cutting-edge technologies. The overall specific aims of the CSIBD are to (1) promote research in basic science areas relevant to better understanding of mucosal immune function and epithelial biology in IBD; (2) advance our understanding of gut pathophysiology by examining the gut as a circuit: studying the core components of gut intra- and inter-cellular interactions that determine health and disease; (3) promote the study of the pathogenesis of IBD; (4) promote interactions among scientists exploring diverse fields that share relevance to IBD; (5) promote translational IBD research; (6) attract basic investigators to the study of IBD and mucosal immunology; and (7) provide an environment and mechanism to foster development of young investigators focused on IBD. A comprehensive Enrichment Program introduces new members to the IBD community and encourages face-to-face interactions between investigators from a range of fields. Attracting new members to the CSIBD and IBD research is also greatly facilitated through Pilot and Feasibility Program support, the success of which is reflected by 79% of recipients achieving external funding.

Public Health Relevance

Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are debilitating conditions that affect more than a million people n the United States. This proposal describes our multi-institutional interdisciplinary center focused on IBD research and its potential to accelerate research in the field of IBD. This research will enable the development of advances in treatment, diagnosis, and prevention of these diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK043351-29
Application #
9625620
Study Section
Special Emphasis Panel (ZDK1)
Program Officer
Perrin, Peter J
Project Start
1997-01-01
Project End
2020-12-31
Budget Start
2019-01-01
Budget End
2019-12-31
Support Year
29
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Aktar, Amena; Rahman, M Arifur; Afrin, Sadia et al. (2018) Plasma and memory B cell responses targeting O-specific polysaccharide (OSP) are associated with protection against Vibrio cholerae O1 infection among household contacts of cholera patients in Bangladesh. PLoS Negl Trop Dis 12:e0006399
Haberman, Yael; Schirmer, Melanie; Dexheimer, Phillip J et al. (2018) Age-of-diagnosis dependent ileal immune intensification and reduced alpha-defensin in older versus younger pediatric Crohn Disease patients despite already established dysbiosis. Mucosal Immunol :
Mohanan, Vishnu; Nakata, Toru; Desch, A Nicole et al. (2018) C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions. Science 359:1161-1166
Sorensen, Elizabeth W; Lian, Jeffrey; Ozga, Aleksandra J et al. (2018) CXCL10 stabilizes T cell-brain endothelial cell adhesion leading to the induction of cerebral malaria. JCI Insight 3:
Gibbons, Sean M; Duvallet, Claire; Alm, Eric J (2018) Correcting for batch effects in case-control microbiome studies. PLoS Comput Biol 14:e1006102
Barshop, Kenneth; Willingham, Field F; Brugge, William R et al. (2018) EMR is superior to rectal suction biopsy for analysis of enteric ganglia in constipation and dysmotility. Gastrointest Endosc 87:876-880
Hui, Ken Y; Fernandez-Hernandez, Heriberto; Hu, Jianzhong et al. (2018) Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease. Sci Transl Med 10:
Zhang, Sidi; Samocha, Kaitlin E; Rivas, Manuel A et al. (2018) Base-specific mutational intolerance near splice sites clarifies the role of nonessential splice nucleotides. Genome Res 28:968-974
Beaulieu, Dawn B; Ananthakrishnan, Ashwin N; Martin, Christopher et al. (2018) Use of Biologic Therapy by Pregnant Women With Inflammatory Bowel Disease Does Not Affect Infant Response to Vaccines. Clin Gastroenterol Hepatol 16:99-105
Garber, John J; Mallick, Emily M; Scanlon, Karen M et al. (2018) Attaching-and-Effacing Pathogens Exploit Junction Regulatory Activities of N-WASP and SNX9 to Disrupt the Intestinal Barrier. Cell Mol Gastroenterol Hepatol 5:273-288

Showing the most recent 10 out of 1166 publications