The primary objective of the Physiology Core is to provide DRC members with access to centralized facilities, services and technical expertise to address complex metabolic questions related to diabetes using normal, diabetic or genetically modified rodent models (including rats, and in some cases mice). This fee-for service Core consists of two Sub-cores, the Animal Surgery and Experimental Procedure Sub-core and the Analytical Sub-core, each of which contains specialized equipment and key personnel to help DRC investigators and/or their trainees achieve their tasks in the most efficient and cost-effective manner. It also serves as a forum for collaboration between members with different research backgrounds but a common interest in studying diabetes. Through the Animal Surgery and Experimental Procedure Sub-core, DRC investigators can access training courses, equipment, laboratory facilities and technical expertise to perform surgeries for stereotaxis and the placement of vascular catheters and other implantables, as well as carry out complex metabolic studies using specialized experimental methodologies (e.g. glucose clamps, tracers, microdialysis and amperometric studies) in conscious rodents - skills that are not easily accessible to investigators without previous training or experience. The Analytical Sub-core provides DRC members with a central facility for the measurement of glucoregulatory hormones, cytokines and neurotransmitters derived from the animal studies. This component of the Physiology Core benefits from the expertise and equipment of an on-going and prolific radioimmunoassay and HPLC facility which has recently incorporated Luminex technology and tandem mass spectrometry for measuring cytokines and neurotransmitters, respectively. In addition, DRC investigators can now profile a focused panel of genes using PCR array technology through this sub-core. Together, these two sub-cores provide DRC members with the unique opportunity to systematically address pertinent mechanistic questions in vivo and to assess metabolic changes in both the central nervous system and peripheral tissues in the most efficient and economical manner.

Public Health Relevance

The Physiology Core aims to promote innovative and collaborative research amongst its members by providing the basic infrastructure to assist those who wish to direct their unique expertise towards understanding the pathophysiology of diabetes and its complications using in vivo physiological approaches.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK045735-21
Application #
8446557
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O2))
Project Start
Project End
Budget Start
2013-03-15
Budget End
2014-01-31
Support Year
21
Fiscal Year
2013
Total Cost
$200,606
Indirect Cost
$78,197
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Hwang, Janice Jin; Parikh, Lisa; Lacadie, Cheryl et al. (2018) Hypoglycemia unawareness in type 1 diabetes suppresses brain responses to hypoglycemia. J Clin Invest 128:1485-1495
Wang, Yongliang; Nasiri, Ali R; Damsky, William E et al. (2018) Uncoupling Hepatic Oxidative Phosphorylation Reduces Tumor Growth in Two Murine Models of Colon Cancer. Cell Rep 24:47-55
RISE Consortium (2018) Impact of Insulin and Metformin Versus Metformin Alone on ?-Cell Function in Youth With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes. Diabetes Care 41:1717-1725
Tan, Qiyuan; Tai, Ningwen; Li, Yangyang et al. (2018) Activation-induced cytidine deaminase deficiency accelerates autoimmune diabetes in NOD mice. JCI Insight 3:
Madiraju, Anila K; Qiu, Yang; Perry, Rachel J et al. (2018) Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med 24:1384-1394
Goldberg, Ira J; Reue, Karen; Abumrad, Nada A et al. (2018) Deciphering the Role of Lipid Droplets in Cardiovascular Disease: A Report From the 2017 National Heart, Lung, and Blood Institute Workshop. Circulation 138:305-315
Stamatouli, Angeliki M; Quandt, Zoe; Perdigoto, Ana Luisa et al. (2018) Collateral Damage: Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors. Diabetes 67:1471-1480
Li, Nina Xiaoyan; Brown, Stacey; Kowalski, Tim et al. (2018) GPR119 Agonism Increases Glucagon Secretion During Insulin-Induced Hypoglycemia. Diabetes 67:1401-1413
Qiu, Yang; Perry, Rachel J; Camporez, João-Paulo G et al. (2018) In vivo studies on the mechanism of methylene cyclopropyl acetic acid and methylene cyclopropyl glycine-induced hypoglycemia. Biochem J 475:1063-1074
Perry, Rachel J; Peng, Liang; Cline, Gary W et al. (2018) Publisher Correction: Non-invasive assessment of hepatic mitochondrial metabolism by positional isotopomer NMR tracer analysis (PINTA). Nat Commun 9:498

Showing the most recent 10 out of 620 publications