The Pilot and Feasibility grant program of the Yale DRC is managed through the Pilot and Feasibility Core. The functions of the Core are to solicit applications from investigators in the Yale School of Medicine and throughout Yale University, to carry out peer review of the applications, and to select meritorious projects for support. Grants are awarded for up to 2 years depending on progress that is made in the first year of funding and plans for the 2rd year. The Core is directed by Kevan Herold, MD who works with an oversight committee that makes final funding selections of grants for support. In the past funding cycle, the Program benefited from additional support available through the CTSA/ARRA funds as well as collaborative support of translational studies with the Yale Clinical Translational Science Award (CTSA). Since the inception of the Yale DRC in 1993, interest and applications to the program has increased - in the past funding cycle, 88 applications were received and 28 were supported. While the majority of applications are received from established investigators, there is a bias towards funding new investigators, many of whom have used the P+F award to obtain preliminary data to apply for external grant support. From the past funding cycle, 11 new external grants were obtained generating over $7M in new research revenue. Studies supported by the P+F program have resulted in more than 40 peer-reviewed publications during the last two funding cycles. The P+F program has also been a mechanism for initiation of new collaborations often between basic and translational scientists. Examples of these collaborations include studies of innate immune pathways that are associated with hepatic insulin resistance and cellular mechanisms of glucose metabolism in adipocytes. In summary the P+F core plays a vital role in attracting new investigators to the diabetes field and recruiting established investigators who are new to diabetes or are developing a new area of diabetes-related research. By effectively utilizing additional sources of revenue, the Core has been able to maintain a high level of funding which has resulted in a high level of productivity.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
New Haven
United States
Zip Code
Perry, Rachel J; Samuel, Varman T; Petersen, Kitt F et al. (2014) The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510:84-91
Madiraju, Anila K; Erion, Derek M; Rahimi, Yasmeen et al. (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542-6
Sajan, Mini P; Ivey 3rd, Robert A; Lee, Mackenzie et al. (2014) PKC? haploinsufficiency prevents diabetes by a mechanism involving alterations in hepatic enzymes. Mol Endocrinol 28:1097-107
Cantley, Jennifer L; Vatner, Daniel F; Galbo, Thomas et al. (2014) Targeting steroid receptor coactivator 1 with antisense oligonucleotides increases insulin-stimulated skeletal muscle glucose uptake in chow-fed and high-fat-fed male rats. Am J Physiol Endocrinol Metab 307:E773-83
Birkenfeld, Andreas L; Shulman, Gerald I (2014) Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59:713-23
Church, Christopher D; Berry, Ryan; Rodeheffer, Matthew S (2014) Isolation and study of adipocyte precursors. Methods Enzymol 537:31-46
Liang Liang; Hongying Shen; De Camilli, Pietro et al. (2014) A novel multiple hypothesis based particle tracking method for clathrin mediated endocytosis analysis using fluorescence microscopy. IEEE Trans Image Process 23:1844-57
Tooley, James E; Herold, Kevan C (2014) Biomarkers in type 1 diabetes: application to the clinical trial setting. Curr Opin Endocrinol Diabetes Obes 21:287-92
Sherr, Jennifer L; Ghazi, Tara; Wurtz, Anna et al. (2014) Characterization of residual * cell function in long-standing type 1 diabetes. Diabetes Metab Res Rev 30:154-62
Berry, Ryan; Church, Christopher D; Gericke, Martin T et al. (2014) Imaging of adipose tissue. Methods Enzymol 537:47-73

Showing the most recent 10 out of 337 publications