The isolation of the cystic fibrosis conductance regulator (CFTR) gene encoding the defective protein in cystic fibrosis (CF) has led to the development of strategies of using somatic gene therapy to treat this disease. Because much of the mortality associated with CF is related to pathology in the lung, efforts to deliver replacement gene therapy directly to airway epithelium have been undertaken. CFTR gene therapy via replication defective adeno and retroviruses has been demonstrated in mature airways. Because the mature resting airway epithelium proliferates slowly, incorporation of targeted genes into the progenitor cell population necessary for permanent complementation may not be possible. In the early developing lung, however, the airway epithelium is highly proliferative and relatively undifferentiated. Fetal epithelial cells targeted by viral vectors containing the CFTR gene could result in the complementation of airway progenitor cells, and thus lead to long-lasting therapeutic benefit. This pilot application describes three types of studies aimed at evaluating the feasibility of gene therapy of fetal lung for the treatment of CF. First, because explanted fetal lung tissue continues to undergo near normal airway in vitro for prolonged periods of time, the conditions for optimal gene therapy of the explanted lung from the mouse using retroviral and adenoviral gene targeting vectors expressing the lacZ and CFTR proteins will be evaluated. Second, functional complementation of the transferred CFTR gene will be assessed, by comparing treated and untreated explants from normal and CFTR deficient embryos for transepithelial voltage technique for gene transfer to human fetal lung will be tested using explants from normal human fetuses. The studies proposed in this application should provide the necessary information to determine whether fetal gene therapy in the treatment of CF is possible and efficacious.

Project Start
Project End
Budget Start
1995-10-01
Budget End
1996-09-30
Support Year
4
Fiscal Year
1996
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Svidritskiy, Egor; Korostelev, Andrei A (2018) Conformational Control of Translation Termination on the 70S Ribosome. Structure 26:821-828.e3
Svidritskiy, Egor; Korostelev, Andrei A (2018) Mechanism of Inhibition of Translation Termination by Blasticidin S. J Mol Biol 430:591-593
Gurda, Brittney L; De Guilhem De Lataillade, Adrien; Bell, Peter et al. (2016) Evaluation of AAV-mediated Gene Therapy for Central Nervous System Disease in Canine Mucopolysaccharidosis VII. Mol Ther 24:206-216
Svidritskiy, Egor; Madireddy, Rohini; Korostelev, Andrei A (2016) Structural Basis for Translation Termination on a Pseudouridylated Stop Codon. J Mol Biol 428:2228-36
Greig, Jenny A; Calcedo, Roberto; Grant, Rebecca L et al. (2016) Intramuscular administration of AAV overcomes pre-existing neutralizing antibodies in rhesus macaques. Vaccine 34:6323-6329
McClain, Lauren E; Davey, Marcus G; Zoltick, Phillip W et al. (2016) Vector serotype screening for use in ovine perinatal lung gene therapy. J Pediatr Surg 51:879-84
Calcedo, Roberto; Wilson, James M (2016) AAV Natural Infection Induces Broad Cross-Neutralizing Antibody Responses to Multiple AAV Serotypes in Chimpanzees. Hum Gene Ther Clin Dev 27:79-82
Svidritskiy, Egor; Korostelev, Andrei A (2015) Ribosome Structure Reveals Preservation of Active Sites in the Presence of a P-Site Wobble Mismatch. Structure 23:2155-61
Wang, Lili; Bell, Peter; Somanathan, Suryanarayan et al. (2015) Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids. Mol Ther 23:1877-87
Calcedo, Roberto; Franco, Judith; Qin, Qiuyue et al. (2015) Preexisting Neutralizing Antibodies to Adeno-Associated Virus Capsids in Large Animals Other Than Monkeys May Confound In Vivo Gene Therapy Studies. Hum Gene Ther Methods 26:103-5

Showing the most recent 10 out of 231 publications