This application serves as a competitive reapplication ofthe Center of Excellence in Molecular Hematology at the Children's Hospital Boston. The goal of the Center is to facilitate fundamental Studies of the blood system in the two most tractable model organisms~the mouse and zebrafish. Focus on these two systems leverages the advantages of each, while providing the benefits of synergy from parallel developmental and genetic studies. The Center is comprised of 3 cores that serve the users within the Harvard Medical area and elsewhere. CORE A provides consultation and resources for generation of engineered mice and ES cells, distribution of mutant strains and various CRE-expressing and CRE-reporter lines, and assistance in analysis of mouse phenotypes and bone marrow transplantation CORE B is a zebrafish core that supports genetics and developmental studies of hematopoiesis. CORE B maintains numerous mutant zebrafish stocks, and provides education to users. CORE C is a new core focused on technology aimed at supporting research on hematopoietic stem cells and individual blood lineages. One part of CORE C is a fee-for-service flow cytometry core that allows for characterization and isolation of hematopoietic cell populations. A complementary part of CORE C is devoted to technology development and dissemination of methodologies for genomic analyses of small numbers of cells. Specifically, CORE C will validate antibodies for ChlP-sequencing and ChlP-Chip approaches, and improve methods for application of these and other methods (such as genome-wide assessment of DNA methylation) to limited numbers of cells isolated by FACS. CORE C will fulfill an unmet need in the hematology community. In addition to the CORES, the Center will provide an Enrichment Program consisting of workshops and Internet meetings, as well as a Pilot Grant Program designed to support emerging investigators or to recruit new investigators to hematology.

Public Health Relevance

Research in the area of developmental molecular hematology is fundamental to an improved understanding of disorders affecting blood cell production and function. Such research is central to the mission of the NIDDK hematology program.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK049216-21
Application #
8695327
Study Section
Special Emphasis Panel (ZDK1-GRB-G)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
21
Fiscal Year
2014
Total Cost
$398,987
Indirect Cost
$166,256
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Kumar, Lalit; Chou, Janet; Yee, Christina S K et al. (2014) Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function. J Exp Med 211:929-42
Alcaraz-Perez, Francisca; Garcia-Castillo, Jesus; Garcia-Moreno, Diana et al. (2014) A non-canonical function of telomerase RNA in the regulation of developmental myelopoiesis in zebrafish. Nat Commun 5:3228
Hagedorn, Elliott J; Durand, Ellen M; Fast, Eva M et al. (2014) Getting more for your marrow: boosting hematopoietic stem cell numbers with PGE2. Exp Cell Res 329:220-6
Musso, Gabriel; Tasan, Murat; Mosimann, Christian et al. (2014) Novel cardiovascular gene functions revealed via systematic phenotype prediction in zebrafish. Development 141:224-35
Sun, Jianlong; Ramos, Azucena; Chapman, Brad et al. (2014) Clonal dynamics of native haematopoiesis. Nature 514:322-7
Das, Partha Pratim; Shao, Zhen; Beyaz, Semir et al. (2014) Distinct and combinatorial functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in mouse embryonic stem cell identity. Mol Cell 53:32-48
Mirabello, Lisa; Macari, Elizabeth R; Jessop, Lea et al. (2014) Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families. Blood 124:24-32
Canver, Matthew C; Bauer, Daniel E; Dass, Abhishek et al. (2014) Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem 289:21312-24
Xie, Huafeng; Xu, Jian; Hsu, Jessie H et al. (2014) Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. Cell Stem Cell 14:68-80
Shinoda, Gen; De Soysa, T Yvanka; Seligson, Marc T et al. (2013) Lin28a regulates germ cell pool size and fertility. Stem Cells 31:1001-9

Showing the most recent 10 out of 30 publications