The BADERC Transgenic Core is located at the Beth Israel Deaconess Medical Center (BIDMC). The Core performs embryo microinjection services;specifically, microinjection of investigator-derived transgenic DNA constructs, for the purpose of making transgenic mice, and also microinjection of investigator-derived targeted embryonic stem cells (ES cells), for the purpose of making gene knockout mice or gene knockin mice (i.e. loxed alleles, point mutations, etc.). In the last 5 year cycle of this grant (2004-2009), the BADERC Transgenic Core provided timely, cost-effective services. In total, 92 projects were performed (injection of DNA transgenes - 49 projects, injection of targeted ES cell clones - 40 projects, cyropreservation of mutant embryos - 3 projects). This level of services represents a 84% increase in activity over the previous 5 year cycle of this grant (1999-2004). These services were provided to 15 different BADERC investigators from 4 different institutions. During this period, BADERC investigators published 43 papers that involved the utilization of genetically altered mice generated by the BIDMC Transgenic Facility. In addition, BADERC investigators obtained 22 NIH-based grants that involved the generation of genetically engineered mice. In summary, the Transgenic Core has provided extensive, cost-effective services to a wide array of productive BADERC investigators.

Public Health Relevance

Diabetes and obesity are diseases that involve many organs and tissues: the brain, endocrine glands, liver, skeletal muscle and adipose tissue. In order to study these diseases, it is necessary to make molecular changes in the context of the whole organism. Genetic engineering, as performed by the BADERC transgenic core, makes such studies possible.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK057521-13
Application #
8378803
Study Section
Special Emphasis Panel (ZDK1-GRB-2)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
13
Fiscal Year
2012
Total Cost
$196,527
Indirect Cost
$20,224
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Kim, MiSung; Astapova, Inna I; Flier, Sarah N et al. (2017) Intestinal, but not hepatic, ChREBP is required for fructose tolerance. JCI Insight 2:
Mumtaz, Rizwan; Trepiccione, Francesco; Hennings, J Christopher et al. (2017) Intercalated Cell Depletion and Vacuolar H+-ATPase Mistargeting in an Ae1 R607H Knockin Model. J Am Soc Nephrol 28:1507-1520
Palmer, Colin J; Bruckner, Raphael J; Paulo, Joao A et al. (2017) Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue. Mol Metab 6:1212-1225
Dai, Ning; Ji, Fei; Wright, Jason et al. (2017) IGF2 mRNA binding protein-2 is a tumor promoter that drives cancer proliferation through its client mRNAs IGF2 and HMGA1. Elife 6:
Fenselau, Henning; Campbell, John N; Verstegen, Anne M J et al. (2017) A rapidly acting glutamatergic ARC?PVH satiety circuit postsynaptically regulated by ?-MSH. Nat Neurosci 20:42-51
Kitano, Kentaro; Schwartz, Dana M; Zhou, Haiyang et al. (2017) Bioengineering of functional human induced pluripotent stem cell-derived intestinal grafts. Nat Commun 8:765
Li, Wei; Jin, William W; Tsuji, Kenji et al. (2017) Ezrin directly interacts with AQP2 and promotes its endocytosis. J Cell Sci 130:2914-2925
Cheng, Longzhen; Duan, Bo; Huang, Tianwen et al. (2017) Identification of spinal circuits involved in touch-evoked dynamic mechanical pain. Nat Neurosci 20:804-814
Fisher, Ffolliott M; Kim, MiSung; Doridot, Ludivine et al. (2017) A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol Metab 6:14-21
Campbell, John N; Macosko, Evan Z; Fenselau, Henning et al. (2017) A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 20:484-496

Showing the most recent 10 out of 372 publications