The GI Surgical Modeling Core provides unique murine surgical services (bariatric and other novel surgical procedures). This core was established to enhance the investigative efforts of the VDDRC investigators and provide avenues of research that otherwise would not be feasible. The primary rational for the core rests in the growing number of mice having genetic alterations with relevance or potential relevance to digestive diseases and the need for surgical and experimental techniques that are necessary to study the impact of genetic (or pharmacologic) manipulations. The procedures require skill and practice in order to study healthy, unstressed mice. The core has skilled surgeons that are capable of adapting a range of procedures to suit specific needs of VDDRC members including bariatric surgical procedures, surgical models for Barrett's esophagus and liver transplantation and ischemia/reperfusion injury models. The quality of the results that are obtained using surgical models is directly related to the general health of the animal. The Core has placed significant emphasis on providing murine models that are free of avoidable, undesired complications. Pre and post-operative care is as important to the success of the procedure as the surgical procedure itself. The overall goal of the core is to provide murine models of bariatric surgery using procedures that are designed to reflect those performed in humans, liver transplantation, and unique customized surgical models adapted to the needs of VDDRC members. To achieve this goal the core: 1. Provides mouse bariatric surgery models with application to basic and translational research. 2. Provides mouse models of Barrett's esophagus and liver and small bowel transplantation. 3. Provides peri-operative care to ensure that animals are healthy and free of undue stress. 4. Trains investigators in specialized surgical procedures. 5. Responds to the needs of VDDRC investigators through development of new procedures. The Core interacts closely with other VDDRC Cores, the Mouse Metabolic Phenotyping Center (MMPC), the Diabetes Research and Training Center, and the Division of Animal Care to ensure and maximize efficient use of resources and personnel and enhance interdisciplinary collaboration.

Public Health Relevance

This core is relevant to the mission of the VDDRC as it will provide novel mouse surgical models that replicate procedures that affect gastrointestinal function in humans. These surgical models, when coupled with genetically altered mice, will be a powerful resource for establishing mechanisms of gastrointestinal function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK058404-14
Application #
8893057
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
2016-04-29
Budget Start
2015-06-01
Budget End
2016-05-31
Support Year
14
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37240
Means, Anna L; Freeman, Tanner J; Zhu, Jing et al. (2018) Epithelial Smad4 Deletion Up-Regulates Inflammation and Promotes Inflammation-Associated Cancer. Cell Mol Gastroenterol Hepatol 6:257-276
Bloodworth, Melissa H; Rusznak, Mark; Pfister, Connor C et al. (2018) Glucagon-like peptide 1 receptor signaling attenuates respiratory syncytial virus-induced type 2 responses and immunopathology. J Allergy Clin Immunol 142:683-687.e12
Weiss, Vivian L; Kiernan, Colleen; Wright, Jesse et al. (2018) Fine-Needle Aspiration-Based Grading of Pancreatic Neuroendocrine Neoplasms Using Ki-67: Is Accurate WHO Grading Possible on Cytologic Material? J Am Soc Cytopathol 7:154-459
Moon, Jiyun M; Aronoff, David M; Capra, John A et al. (2018) Examination of Signatures of Recent Positive Selection on Genes Involved in Human Sialic Acid Biology. G3 (Bethesda) 8:1315-1325
Feng, Yinnian; Reinherz, Ellis L; Lang, Matthew J (2018) ?? T Cell Receptor Mechanosensing Forces out Serial Engagement. Trends Immunol 39:596-609
Roberts, Jordan; Gonzalez, Raul S; Revetta, Frank et al. (2018) Mesenteric tumour deposits arising from small-intestine neuroendocrine tumours are frequently associated with fibrosis and IgG4-expressing plasma cells. Histopathology 73:795-800
Lindsey, Amelia R I; Rice, Danny W; Bordenstein, Sarah R et al. (2018) Evolutionary Genetics of Cytoplasmic Incompatibility Genes cifA and cifB in Prophage WO of Wolbachia. Genome Biol Evol 10:434-451
Lopez, Christopher A; Skaar, Eric P (2018) The Impact of Dietary Transition Metals on Host-Bacterial Interactions. Cell Host Microbe 23:737-748
Cooke, Allison L; Morris, Jamie; Melchior, John T et al. (2018) A thumbwheel mechanism for APOA1 activation of LCAT activity in HDL. J Lipid Res 59:1244-1255
Schulte, Michael L; Fu, Allie; Zhao, Ping et al. (2018) Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat Med 24:194-202

Showing the most recent 10 out of 1365 publications