The Columbia University Diabetes Research Center was established in May 2003. As the focus of diabetes research at the largest academic medical center in the largest U.S. metropolitan area, the Columbia DRC promotes interactions among an outstanding research base, integrating basic and translational diabetes research with existing institutional centers of excellence in obesity, atherosclerosis, neurobiology, and cardiovascular biology. The DRC fosters translation of basic research advances, clinical training, epidemiology, and-through its partnership with the Berrie Diabetes Center-encourages diabetes related philanthropy. The Biomedical Research Base is comprised of 84 NIH-, ADA- or JDRF-funded investigators at Columbia, and 7 at sister institutions in New York City. The DRC supports core facilities in (A) Genomics;(B) Hormone &Metabolite;(E) Histopathology;(F) Mouse Phenotyping;and (G) Flow Cytometry. Additionally, the DRC makes available funding for young investigators through a pilot/feasibility grant program (P&F), and provides established scientists in other research areas at Columbia University and in neighboring institutions with the opportunity and support to enter the diabetes field through this program. The DRC supports program enrichment activities, designed to increase the awareness of diabetes research in the scientific/academic community at Columbia University;it also promotes interactions with academic institutions in the greater New York area. An administrative Core provides overall logistical support, financial oversight and integration of research efforts, shared core facilities and P&F program administration. During the past funding cycle, the DRC has endeavored to advance NIDDK's mission in diabetes by: (I) raising awareness of and interest in advanced clinical and basic diabetes research at Columbia University and in New York City;(ii) enhancing training and other diabetes-related educational opportunities for students, fellows, academic and community-based physicians;(///) attracting new investigators to diabetes research;{iv) providing state-of-the-art core facilities to enhance research of DRC members and contribute to the development of innovative methods for diabetes research and care;(v) fostering a collegial academic environment to facilitate information exchange within the institution and with other DRCs;(w) providing impetus to translate basic science discoveries into clinical care and community initiatives to improve the health of people with diabetes;and (wV) leveraging NIDDK resources with local and national philanthropic and diabetes advocacy organizations to integrate and expand P&F grants, as well as training and educational programs.

Public Health Relevance

; The Columbia University Diabetes Research Center continues to facilitate interactions among investigators from different academic backgrounds, providing material and intellectual support for initiatives that broaden our understanding of the causes of diabetes, and improve treatment outcomes;and to underwrite the operation of technical facilities for data acquisition and analysis, training opportunities for young investigators and students, and seeding funds for highly potentially transformative research projects.

National Institute of Health (NIH)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1)
Program Officer
Hyde, James F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
Internal Medicine/Medicine
Schools of Medicine
New York
United States
Zip Code
Haeusler, Rebecca A; Hartil, Kirsten; Vaitheesvaran, Bhavapriya et al. (2014) Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat Commun 5:5190
Censani, Marisa; Conroy, Rushika; Deng, Liyong et al. (2014) Weight loss after bariatric surgery in morbidly obese adolescents with MC4R mutations. Obesity (Silver Spring) 22:225-31
Zhang, Yiying; Zitsman, Jeffrey L; Hou, Jue et al. (2014) Fat cell size and adipokine expression in relation to gender, depot, and metabolic risk factors in morbidly obese adolescents. Obesity (Silver Spring) 22:691-7
Arora, Nidhi; Papapanou, Panos N; Rosenbaum, Michael et al. (2014) Periodontal infection, impaired fasting glucose and impaired glucose tolerance: results from the Continuous National Health and Nutrition Examination Survey 2009-2010. J Clin Periodontol 41:643-52
Morabito, Michael V; Berman, Diego E; Schneider, Remy T et al. (2014) Hyperleucinemia causes hippocampal retromer deficiency linking diabetes to Alzheimer's disease. Neurobiol Dis 65:188-92
Thai, Ashley; Papapanou, Panos N; Jacobs Jr, David R et al. (2014) Periodontal infection and cardiorespiratory fitness in younger adults: results from continuous national health and nutrition examination survey 1999-2004. PLoS One 9:e92441
Ericksen, Russell E; Rose, Shannon; Westphalen, Christoph Benedikt et al. (2014) Obesity accelerates Helicobacter felis-induced gastric carcinogenesis by enhancing immature myeloid cell trafficking and TH17 response. Gut 63:385-94
Dutia, Roxanne; Brakoniecki, Katrina; Bunker, Phoebe et al. (2014) Limited recovery of *-cell function after gastric bypass despite clinical diabetes remission. Diabetes 63:1214-23
Heinrich, Garrett; Meece, Kana; Wardlaw, Sharon L et al. (2014) Preserved energy balance in mice lacking FoxO1 in neurons of Nkx2.1 lineage reveals functional heterogeneity of FoxO1 signaling within the hypothalamus. Diabetes 63:1572-82
Kode, Aruna; Manavalan, John S; Mosialou, Ioanna et al. (2014) Leukaemogenesis induced by an activating ?-catenin mutation in osteoblasts. Nature 506:240-4

Showing the most recent 10 out of 133 publications