The Cystic Fibrosis Research Center at the University of Pittsburgh currently has 55 members in eight departments and garners nearly $10 M in external grants and contracts to support its CF research efforts. These are focused in three major areas: The Center has a strong basic science component that addresses the Cell and Molecular Biology of CF, and is supported by NIH, NSF and Cystic Fibrosis Foundation (CFF) grants. Investigators in this group make extensive use of differentiated, primary human bronchial epithelia (HBE) for their work. They employ the methods of biochemistry, molecular biology, cell biology and electrophysiology to study CFTR and ENaC functions in epithelial membranes, how these pathways contribute to normal airway function, how they are trafficked between various compartments of the protein secretory and recycling pathways, and how pharmacological manipulation of channel biogenesis (correction) or channel activity (potentiation) influence HBE function. Studies of Lung Infection and Inflammation focus on the pulmonary inflammatory response to bacterial infection in HBE and animal models. These studies aim to improve our understanding of CF disease pathogenesis, define bio-markers for clinical trials, and identify targets for anti-inflammatory therapy. The Clinical Studies group translates basic findings into new therapies. It develops and evaluates methods to improve airway drug delivery and isotopic clearance assays that assess transmural airway liquid movements in vivo, to test therapeutics that target the core defect in CF. The proposed Research and Translational Core Center will be directed by Dr. Raymond Frizzell while Dr. Joseph Pilewski will serve as Associate Director. The Center is comprised of three scientific cores: Human Airway Cell and Assays (Frizzell, PI), Clinical Studies/Outcomes (Pilewski, PI), and Imaging (Watkins, PI). The Core Center will operate a Pilot and Feasibility Program to bring new investigators into CF research. This Center emphasizes the translation of basic knowledge into applied therapeutics.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-W (M2))
Program Officer
Mckeon, Catherine T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Gopal, Radha; Rapaka, Rekha R; Kolls, Jay K (2017) Immune reconstitution inflammatory syndrome associated with pulmonary pathogens. Eur Respir Rev 26:
Wu, Tongde; Huang, Julianne; Moore, Patrick J et al. (2017) Identification of BPIFA1/SPLUNC1 as an epithelium-derived smooth muscle relaxing factor. Nat Commun 8:14118
Corcoran, Timothy E; Godovchik, Joseph E; Donn, Karl H et al. (2017) Overnight delivery of hypertonic saline by nasal cannula aerosol for cystic fibrosis. Pediatr Pulmonol 52:1142-1149
Guerriero, Christopher J; Reutter, Karl-Richard; Augustine, Andrew A et al. (2017) Transmembrane helix hydrophobicity is an energetic barrier during the retrotranslocation of integral membrane ERAD substrates. Mol Biol Cell 28:2076-2090
Manni, Michelle L; Mandalapu, Sivanarayana; Salmeron, Andres et al. (2017) Bromodomain and Extra-Terminal Protein Inhibition Attenuates Neutrophil-dominant Allergic Airway Disease. Sci Rep 7:43139
Chakraborty, Krishnendu; Raundhal, Mahesh; Chen, Bill B et al. (2017) The mito-DAMP cardiolipin blocks IL-10 production causing persistent inflammation during bacterial pneumonia. Nat Commun 8:13944
Flitter, Becca A; Hvorecny, Kelli L; Ono, Emiko et al. (2017) Pseudomonas aeruginosa sabotages the generation of host proresolving lipid mediators. Proc Natl Acad Sci U S A 114:136-141
Chen, Kong; Kolls, Jay K (2017) Interluekin-17A (IL17A). Gene 614:8-14
Sharma, Ramankur; Corcoran, Timothy E; Garoff, Stephen et al. (2017) Transport of a partially wetted particle at the liquid/vapor interface under the influence of an externally imposed surfactant generated Marangoni stress. Colloids Surf A Physicochem Eng Asp 521:49-60
Fercana, George R; Yerneni, Saigopalakrishna; Billaud, Marie et al. (2017) Perivascular extracellular matrix hydrogels mimic native matrix microarchitecture and promote angiogenesis via basic fibroblast growth factor. Biomaterials 123:142-154

Showing the most recent 10 out of 130 publications