The overall goal of the Pluripotent Stem Cell and Organoid Core of the Digestive Health Center (DHC) is to provide new, cutting edge technologies that are focused on digestive disease research and enable the use of tissue organoids to model human disease. The Core pursues this goal with four complementary aims. In the first aim ?to provide DHC investigators with quality tested PSCs and PSC-derived GI tissues,? the Core makes available to users quality-tested human pluripotent stem cells (PSCs) and PSC-derived intestinal and gastric organoids. These are novel 3D-miniature organs that enable studies related to physiology and pathobiology relevant to humans. In the second aim ?to generate biopsy-derived human enteroids for DHC investigators,? the Core also provides investigators with the opportunity to generate gastric, intestinal, and colonic ?enteroids? from healthy or diseased subjects. In the third aim ?to derive and quality test disease-specific induced PSC,? the Core applies well-established transfection, culture, and phenotyping protocols to generate inducible PSCs (iPSCs) from normal and diseased subjects to facilitate studies of pathogenesis of disease, drug screening, etc. To be able to track and visualize these cells in experimental assays, the Core also provide PSC-editing and screening services to establish novel cell lines based on investigators' needs. And in the fourth aim ?to sponsor training courses and workshops on PSC and organoid technology,? the Core holds regular sessions on basic and advanced techniques for PSC culture, generation of iPSCs, and generation and use of human digestive tissue organoids. These novel technologies empower DHC investigators to study mechanisms of disease using multi-cellular experimental systems that have direct ?lineage? to normal and diseased human tissues (including at different stages of maturation). The delivery of services is streamlined and centralized, and positions investigators to explore new collaborative projects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK078392-11
Application #
9312950
Study Section
Special Emphasis Panel (ZDK1)
Project Start
2007-08-01
Project End
Budget Start
2017-08-01
Budget End
2018-05-31
Support Year
11
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Kimura, Masaki; Azuma, Momoko; Zhang, Ran-Ran et al. (2018) Digitalized Human Organoid for Wireless Phenotyping. iScience 4:294-301
Azouz, Nurit P; Ynga-Durand, Mario A; Caldwell, Julie M et al. (2018) The antiprotease SPINK7 serves as an inhibitory checkpoint for esophageal epithelial inflammatory responses. Sci Transl Med 10:
Valanejad, Leila; Cast, Ashley; Wright, Mary et al. (2018) PARP1 activation increases expression of modified tumor suppressors and pathways underlying development of aggressive hepatoblastoma. Commun Biol 1:67
Mahe, Maxime M (2018) Engineering a second brain in a dish. Brain Res 1693:165-168
Taylor, Amy E; Carey, Alexandra N; Kudira, Ramesh et al. (2018) Interleukin 2 Promotes Hepatic Regulatory T Cell Responses and Protects From Biliary Fibrosis in Murine Sclerosing Cholangitis. Hepatology 68:1905-1921
Whitt, Jordan; Woo, Vivienne; Lee, Patrick et al. (2018) Disruption of Epithelial HDAC3 in Intestine Prevents Diet-Induced Obesity in Mice. Gastroenterology 155:501-513
Inata, Yu; Kikuchi, Satoshi; Samraj, Ravi S et al. (2018) Autophagy and mitochondrial biogenesis impairment contribute to age-dependent liver injury in experimental sepsis: dysregulation of AMP-activated protein kinase pathway. FASEB J 32:728-741
Harley, John B; Chen, Xiaoting; Pujato, Mario et al. (2018) Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat Genet 50:699-707
Soini, Tea; Pihlajoki, Marjut; Andersson, Noora et al. (2018) Transcription factor GATA6: a novel marker and putative inducer of ductal metaplasia in biliary atresia. Am J Physiol Gastrointest Liver Physiol 314:G547-G558
Kelly, Daniel; Kotliar, Michael; Woo, Vivienne et al. (2018) Microbiota-sensitive epigenetic signature predicts inflammation in Crohn's disease. JCI Insight 3:

Showing the most recent 10 out of 543 publications