PROJECT SUMIWARY (See instructions): The Cellular Physiology Core provides a series of graded in vitro model systems and technologies for studying the function and regulation of transport and other membrane proteins in isolated expression systems and organized epithelia. The Core will interact with the other Cores in such a way that studies of transport proteins and interacting proteins developed either in model systems or isolated tubules may be exploited by direct measures of their function in in vitro systems that also lend themselves to further analysis by imaging. The Core technologies also are directly applicable to the study of plasma membrane proteins identified by novel model systems. To accomplish these goals, the Core will: a) provide a center for expression of transport proteins and regulatory/interacting proteins in isolated in vitro systems, which will permit direct assessment of the influence of these interactions on electrophysiologic characteristics both at the macroscopic and single channel level. These systems include Xenopus oocytes and naive cell expression systems (e.g., HEK-293 cells) and will permit direct measure of plasma membrane expression of channels and their electrophysiologic features;b) establish systems to expand the study of transport proteins and interacting proteins/pathways in organized epithelia either natively expressing the transport proteins or in model epithelia (e.g., MDCK and FRT cells) where transport protein mutations may be evaluated more fully than in single cell expression systems. These techniques will include standard voltage clamp for assessment of short-circuit current and transepithelial resistance and direct measures of tissue capacitance;c) provide methods for modulating gene expression in epithelia. Recombinant viruses will be generated to allow reconstitution of wild-type or mutated channel subunits and expression of other genes of interest. Silencing RNAs will be expressed using recombinant viruses and lipid-mediated transfer methods to permit downregulation of gene expression;and d) provide analysis of post-translational modifications of transport proteins and regulatory proteins, including phosphorylation, ubiquitination, glycosylation and palmitoylation using both biochemical and mass spectrometry approaches.

Public Health Relevance

The Pittsburgh Center for Kidney Research Cellular Physiology Core provides mechanistic analyses of the functions of membrane transport and other associated proteins through a series of graded in vitro model systems. This Core interfaces with and complements the other Cores and has the overall goal of elucidating at a molecular and cellular level the function and regulation of key proteins involved in kidney diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK079307-07
Application #
8734387
Study Section
Special Emphasis Panel (ZDK1-GRB-6)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
7
Fiscal Year
2014
Total Cost
$218,680
Indirect Cost
$76,680
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Chang, Andy; Yeung, Steven; Thakkar, Arvind et al. (2015) Prevention of skin carcinogenesis by the ?-blocker carvedilol. Cancer Prev Res (Phila) 8:27-36
Jackson, Edwin K; Cheng, Dongmei; Verrier, Jonathan D et al. (2014) Interactive roles of CD73 and tissue nonspecific alkaline phosphatase in the renal vascular metabolism of 5'-AMP. Am J Physiol Renal Physiol 307:F680-5
Novitskaya, Tatiana; McDermott, Lee; Zhang, Ke Xin et al. (2014) A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury. Am J Physiol Renal Physiol 306:F496-504
Morrell, Eric D; Kellum, John A; Hallows, Kenneth R et al. (2014) Epithelial transport during septic acute kidney injury. Nephrol Dial Transplant 29:1312-9
Prakasam, H Sandeep; Gallo, Luciana I; Li, Hui et al. (2014) A1 adenosine receptor-stimulated exocytosis in bladder umbrella cells requires phosphorylation of ADAM17 Ser-811 and EGF receptor transactivation. Mol Biol Cell 25:3798-812
Schuler, P J; Saze, Z; Hong, C-S et al. (2014) Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clin Exp Immunol 177:531-43
Chen, Jingxin; Kleyman, Thomas R; Sheng, Shaohu (2014) Deletion of ?-subunit exon 11 of the epithelial Na+ channel reveals a regulatory module. Am J Physiol Renal Physiol 306:F561-7
Hecht, Karen A; O'Donnell, Allyson F; Brodsky, Jeffrey L (2014) The proteolytic landscape of the yeast vacuole. Cell Logist 4:e28023
Nirmal, J; Wolf-Johnston, A S; Chancellor, M B et al. (2014) Liposomal inhibition of acrolein-induced injury in rat cultured urothelial cells. Int Urol Nephrol 46:1947-52
Yao, Mingyi; Rogers, Natasha M; Csányi, Gábor et al. (2014) Thrombospondin-1 activation of signal-regulatory protein-? stimulates reactive oxygen species production and promotes renal ischemia reperfusion injury. J Am Soc Nephrol 25:1171-86

Showing the most recent 10 out of 156 publications