The Model Organisms Core will employ two genetically-tractable systems, the yeast S. cerevisiae and the zebrafish D. rerio, each with distinct advantages. These experimental systems will help dissect fundamental aspects of kidney development and protein structure and function. Experiments associated with these model systems will be complemented by the use of small molecule modulators that have emerged from Core associated activities over the past four years. Hypotheses arising from the unique attributes of the yeast and zebrafish models and from the use of chemical modulators will continue to be tested in higher cell types and organisms via the other Cores. In turn, experiments using yeast and zebrafish provide rapid assessments of predictions from more complex systems. The goals of the Yeast Core are to develop and continue to utilize established expression systems for wild type and disease-causing proteins that transit the secretory pathway in kidney cells. Genomic and proteomic attacks will identify factors that impact their biogenesis, and the mechanism of action of these factors will be established. Toward these goals, the Yeast Core has created over a dozen expression systems and offers collaborators the expertise and tools to co-opt this model organism. Specific assays developed in the Core include methods to assess how chaperones, the ubiquitin proteasome pathway, autophagy, and chemical chaperones impact secretory protein biogenesis. The Zebrafish Core will utilize established transgenic kidney reporter lines and to utilize established automated screening technologies in small molecule screens to identify chemical probes for kidney development and disease. The Zebrafish Core has a number of transgenic lines and identified small molecules that impact kidney development, and has pinpointed when specific factors act during kidney development. Collaborators will be able to establish and analyze results from newly created zebrafish lines and perform small molecule screens. Overall, the knowledge gained from the use of these complementary model organisms will be expanded via collaborations with the other Cores, and in turn the hypotheses that arise from more complex systems can be rapidly and in some cases more thoroughly tested in yeast and zebrafish. The Core will co-

Public Health Relevance

;The Pittsburgh Center for Kidney Research Model Organisms Core utilizes complementary genetic systems to define how renal proteins mature and how kidney progenitors develop. These genetic strategies are complemented by experiments using recently isolated small molecules that affect protein function and renal cell homeostasis. The Core's goal is to decipher how kidney diseases arise and can be treated.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK079307-07
Application #
8734390
Study Section
Special Emphasis Panel (ZDK1-GRB-6)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
7
Fiscal Year
2014
Total Cost
$184,800
Indirect Cost
$64,800
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Sneddon, W Bruce; Ruiz, Giovanni W; Gallo, Luciana I et al. (2016) Convergent Signaling Pathways Regulate Parathyroid Hormone and Fibroblast Growth Factor-23 Action on NPT2A-mediated Phosphate Transport. J Biol Chem 291:18632-42
Chiba, Takuto; Skrypnyk, Nataliya I; Skvarca, Lauren Brilli et al. (2016) Retinoic Acid Signaling Coordinates Macrophage-Dependent Injury and Repair after AKI. J Am Soc Nephrol 27:495-508
Al-Qusairi, Lama; Basquin, Denis; Roy, Ankita et al. (2016) Renal tubular SGK1 deficiency causes impaired K+ excretion via loss of regulation of NEDD4-2/WNK1 and ENaC. Am J Physiol Renal Physiol 311:F330-42
Shi, Shujie; Luke, Cliff J; Miedel, Mark T et al. (2016) Activation of the Caenorhabditis elegans Degenerin Channel by Shear Stress Requires the MEC-10 Subunit. J Biol Chem 291:14012-22
Sharma, Akhil; Yabes, Jonathan; Al Mawed, Saleem et al. (2016) Impact of Cognitive Function Change on Mortality in Renal Transplant and End-Stage Renal Disease Patients. Am J Nephrol 44:462-472
Al-Bataineh, Mohammad M; Kinlough, Carol L; Poland, Paul A et al. (2016) Muc1 enhances the β-catenin protective pathway during ischemia-reperfusion injury. Am J Physiol Renal Physiol 310:F569-79
Schaufelberger, Sara A; Rosselli, Marinella; Barchiesi, Federica et al. (2016) 2-Methoxyestradiol, an endogenous 17β-estradiol metabolite, inhibits microglial proliferation and activation via an estrogen receptor-independent mechanism. Am J Physiol Endocrinol Metab 310:E313-22
Zhou, Dong; Tan, Roderick J; Fu, Haiyan et al. (2016) Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. Lab Invest 96:156-67
Walker, Kenneth A; Sims-Lucas, Sunder; Bates, Carlton M (2016) Fibroblast growth factor receptor signaling in kidney and lower urinary tract development. Pediatr Nephrol 31:885-95
Manos-Turvey, Alexandra; Al-Ashtal, Hiba A; Needham, Patrick G et al. (2016) Dihydropyrimidinones and -thiones with improved activity against human polyomavirus family members. Bioorg Med Chem Lett 26:5087-5091

Showing the most recent 10 out of 274 publications