The focus for the George M. O'Brien Kidney Centers has been basic science investigation that has very successfully defined kidney structure, function and disease mechanisms. New technologies now provide opportunities to translate these remarkable basic science advances to the clinic in ways not previously imaginable. Advances in identification of genetic susceptibilities as well as the advent of the genome project and systems biology technologies set the stage for development of molecular maps that can be superimposed on traditional pathologic and functional descriptors so as to define diseases in a new way. These developments have important implications for definition of molecular markers that will allow accurate individualized prediction of outcome and response to therapy, and the identification of key pathways for therapeutic attack. The University of Michigan has developed and recruited expertise to help exploit these opportunities for people with kidney diseases. The realization of these opportunities requires collaborations between investigators world-wide for the collection of samples from well characterized individuals and populations, the application of technologies that facilitate information availability and exchange, the development and maintenance of databanks, and the integration of these technologies between human diseases, animals models, cellular systems and molecular signaling so as to define key pathways driving renal disease processes. Towards these goals the O'Brien Kidney Research Core Center at the University of Michigan will support four Cores: A. An Applied Systems Biology Core that has developed the platforms and infrastructure necessary to serve the integrative functions outlined above;B. A Clinical Phenotyping and Biobank Core that will collect the biosamples from affected characterized individuals;and C. An Applied Genetics Core that will perform mutational analysis for genotype/phenotype matching;D. A Basic Research Enhancement Core that will facilitate basic science development, integration and translation. These cores together with the Pilot and Feasibility Projects and Educational Enhancement Program in the Administrative Core will coordinate the grant, utilize the Cores and attract and support new talent into kidney research. The University of Michigan will provide $1,000,000 in supplemental support for the Center.
The aim i s to develop a structure which will serve local and national kidney investigators and the kidney community at large. Using web based tools, we will provide the basis for new understanding of disease-specific molecular pathology that can be used by every kidney investigator in the public and private sector world-wide.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK081943-07
Application #
8733668
Study Section
Special Emphasis Panel (ZDK1-GRB-6 (M2))
Program Officer
Kimmel, Paul
Project Start
2008-09-01
Project End
2018-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
7
Fiscal Year
2014
Total Cost
$1,125,462
Indirect Cost
$316,071
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Afshinnia, Farsad; Zeng, Lixia; Byun, Jaeman et al. (2017) Myeloperoxidase Levels and Its Product 3-Chlorotyrosine Predict Chronic Kidney Disease Severity and Associated Coronary Artery Disease. Am J Nephrol 46:73-81
Crawford, Brendan D; Gillies, Christopher E; Robertson, Catherine C et al. (2017) Evaluating Mendelian nephrotic syndrome genes for evidence for risk alleles or oligogenicity that explain heritability. Pediatr Nephrol 32:467-476
Zhang, Jifeng; Niimi, Manabu; Yang, Dongshan et al. (2017) Deficiency of Cholesteryl Ester Transfer Protein Protects Against Atherosclerosis in Rabbits. Arterioscler Thromb Vasc Biol 37:1068-1075
Lee, Ha Won; Khan, Samia Q; Khaliqdina, Shehryar et al. (2017) Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. J Biol Chem 292:732-747
Lopez-Rivera, Esther; Liu, Yangfan P; Verbitsky, Miguel et al. (2017) Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. N Engl J Med 376:742-754
Lindenmeyer, Maja T; Kretzler, Matthias (2017) Renal biopsy-driven molecular target identification in glomerular disease. Pflugers Arch 469:1021-1028
Mariani, Laura H; Martini, Sebastian; Barisoni, Laura et al. (2017) Interstitial fibrosis scored on whole-slide digital imaging of kidney biopsies is a predictor of outcome in proteinuric glomerulopathies. Nephrol Dial Transplant :
Levin, Adeera; Tonelli, Marcello; Bonventre, Joseph et al. (2017) Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet 390:1888-1917
Shved, Natallia; Warsow, Gregor; Eichinger, Felix et al. (2017) Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts. Sci Rep 7:8576
Fukuda, Akihiro; Minakawa, Akihiro; Sato, Yuji et al. (2017) Urinary podocyte and TGF-?1 mRNA as markers for disease activity and progression in anti-glomerular basement membrane nephritis. Nephrol Dial Transplant 32:1818-1830

Showing the most recent 10 out of 157 publications