The Gl Genetics Core will serve a critical role in facilitating access to genetic tools for Center-based research projects. Genetic manipulation is a critical approach from biological modeling to establishing and testing critical molecular signaling pathways in both the normal and clinically relevant disease state. Genetic tools are extremely dynamic, with new technologies coming on line every year. The Genetics Core will serve as a hub for current, emerging and future genetic technologies, advising and helping Center members properly assess and keep abreast of these often disruptive scientific advances. The Genetics Core will balance its efforts on current (such as siRNA, in vivo imaging, microarray, mouse ES cells), emerging (such as transcriptome analyses via next-generation sequencing and zebrafish knockouts) and near-future (such as new DNA delivery platforms including silica nanopartides) genetics tools. As a hub for access to the latest information on genetics technologies, this core will represent an important and central interface to this dynamic research area through its training opportunities, Web site and individual consultation. The Genetics Core Director (Stephen C. Ekker, Ph.D., 15% time requested) is a recent recruit to the Mayo Clinic with extensive molecular genetics expertise. To achieve the goal of this Core, part-time support for bioinformatics, biostatistics and genetics instruction is requested.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK084567-05
Application #
8517108
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
5
Fiscal Year
2013
Total Cost
$210,724
Indirect Cost
$71,264
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Ni, Jun; Wangensteen, Kirk J; Nelsen, David et al. (2016) Active recombinant Tol2 transposase for gene transfer and gene discovery applications. Mob DNA 7:6
Landry, Greg M; Hirata, Taku; Anderson, Jacob B et al. (2016) Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis. Am J Physiol Renal Physiol 310:F152-9
Ma, Alvin C; McNulty, Melissa S; Poshusta, Tanya L et al. (2016) FusX: A Rapid One-Step Transcription Activator-Like Effector Assembly System for Genome Science. Hum Gene Ther 27:451-63
Khanna, S; Montassier, E; Schmidt, B et al. (2016) Gut microbiome predictors of treatment response and recurrence in primary Clostridium difficile infection. Aliment Pharmacol Ther 44:715-27
Druliner, Brooke R; Rashtak, Shahrooz; Ruan, Xiaoyang et al. (2016) Colorectal Cancer with Residual Polyp of Origin: A Model of Malignant Transformation. Transl Oncol 9:280-6
Tomita, Kyoko; Freeman, Brittany L; Bronk, Steven F et al. (2016) CXCL10-Mediates Macrophage, but not Other Innate Immune Cells-Associated Inflammation in Murine Nonalcoholic Steatohepatitis. Sci Rep 6:28786
Kawakami, Hisato; Huang, Shengbing; Pal, Krishnendu et al. (2016) Mutant BRAF Upregulates MCL-1 to Confer Apoptosis Resistance that Is Reversed by MCL-1 Antagonism and Cobimetinib in Colorectal Cancer. Mol Cancer Ther 15:3015-3027
Tabibian, James H; Varghese, Cyril; LaRusso, Nicholas F et al. (2016) The enteric microbiome in hepatobiliary health and disease. Liver Int 36:480-7
Verma, Vikas K; Li, Haiyang; Wang, Ruisi et al. (2016) Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles. J Hepatol 64:651-60
Ding, Xiwei; Chaiteerakij, Roongruedee; Moser, Catherine D et al. (2016) Antitumor effect of the novel sphingosine kinase 2 inhibitor ABC294640 is enhanced by inhibition of autophagy and by sorafenib in human cholangiocarcinoma cells. Oncotarget 7:20080-92

Showing the most recent 10 out of 399 publications