The long-term mission of the Mayo Translational PKD Center (MTPC) is to develop Core facilities to support existing and stimulate new PKD research by Mayo and non-Mayo investigators and to facilitate the translation of basic research breakthroughs into improvements in clinical practice. The proposed Center Cores (Molecular Genetics and Proteomics Core, Model Systems Core, and Human Imaging Core) build on the existing strengths of the PKD investigators at Mayo. The Molecular Genetics and Proteomics Core will offer mutation screening services of PKD1 and PKD2 by direct sequencing to characterize large ADPKD populations, especially those involved in clinical trials, and to characterize patient-derived cell lines to increase their value to the PKD community;will facilitate the study of atypical ADPKD patients and include sample collection, mutation screening (including genes beyond PKD1 and PKD2), and linkage analysis, where appropriate;will complement the genetic studies by facilitating the collection, fractionation, and validation of urine samples for future proteomic and RNA expression analysis. These services will be augmented by developmental projects. The Model Svstems Core will make available PKD model systems (C. elegans, zebrafish, and rodent) and a wide range of imaging and physiology technologies to evaluate potential therapies and ascertain the function of PKD proteins and will implement a strong developmental program. The Human Imaging Core will facilitate the transmission, collection, and storage of imaging data utilized in translational PKD research;provide state of the art analytic tools for semi-automated volumetric analysis of polycystic kidneys and liver and for functional assessment of the kidneys and heart including measurements of renal blood flow;and develop enhanced or new methodologies that facilitate the translation of basic PKD research discoveries into the clinical practice. The combination of these Core facilities will strongly i.) Foster collaborative, multidisciplinary, translational PKD research and expand the technical and collaborative capabilities of established Mayo and non-Mayo PKD investigators;ii) Attract talented investigators from other disciplines into PKD research;iii.) Speed assays of potential treatments for PKD and facilitate their introduction into the clinical arena;iii.) Promote synergistic interaction between the Research PKD Base and the clinical research expertise of Mayo PKD investigators;iv.) Develop and implement a robust, diverse Scientific Enrichment Program that includes seminars, workshops, symposia, a visiting faculty program, and Web-based curricula;and, v.) Identify and nurture development of new PKD investigators via a rigorously peer-reviewed, widely publicized Pilot and Feasibility Program. To create and foster such an interactive and productive environment, the Center will use Mayo's unique strengths, which include excellence in PKD-related research, large and well-characterized patient populations, outstanding population sciences, tradition in clinical trials, and institutional resources. The Center's global efforts will be enhanced by substantial institutional resources that include a Center for Translational Science Activities (CTSA) grant (with a NIH Training Grant in Kidney Diseases), and complementary institutional cores that include the Genomics Resource Center, Proteomics Research Center, Department of Comparative Medicine, Zebrafish Core Facility, Transgenic and Gene Knockout Core Facility, Medical Imaging Informatics Innovation Center, Center for Advanced Imaging Research, Biomedical Imaging Research Laboratory, CT Clinical Innovation Center, and Gonda Vascular Center. Ultimately, the Center grant will enhance and expand the collaborative intersections and critical mass of scientists addressing PKD research.

Public Health Relevance

Polycystic kidney disease (PKD) and its complications have a significant effect on public health and health care utilization costs. Research supported by the Center grant has the potential to improve care of patients who have PKD and related disorders.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O1))
Program Officer
Flessner, Michael Francis
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Larusso, Nicholas F; Masyuk, Tatyana V; Hogan, Marie C (2016) Polycystic Liver Disease: The Benefits of Targeting cAMP. Clin Gastroenterol Hepatol 14:1031-4
Torres, Vicente E; Higashihara, Eiji; Devuyst, Olivier et al. (2016) Effect of Tolvaptan in Autosomal Dominant Polycystic Kidney Disease by CKD Stage: Results from the TEMPO 3:4 Trial. Clin J Am Soc Nephrol 11:803-11
Zand, Ladan; Torres, Vicente E; Larson, Timothy S et al. (2016) Renal hemodynamic effects of the HMG-CoA reductase inhibitors in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 31:1290-5
Warner, Gina; Hein, Kyaw Zaw; Nin, Veronica et al. (2016) Food Restriction Ameliorates the Development of Polycystic Kidney Disease. J Am Soc Nephrol 27:1437-47
Gansevoort, Ron T; Meijer, Esther; Chapman, Arlene B et al. (2016) Albuminuria and tolvaptan in autosomal-dominant polycystic kidney disease: results of the TEMPO 3:4 Trial. Nephrol Dial Transplant 31:1887-1894
Kline, Timothy L; Korfiatis, Panagiotis; Edwards, Marie E et al. (2016) Automatic total kidney volume measurement on follow-up magnetic resonance images to facilitate monitoring of autosomal dominant polycystic kidney disease progression. Nephrol Dial Transplant 31:241-8
Wu, Min; Wang, Diping; Zand, Ladan et al. (2016) Pregnancy outcomes in autosomal dominant polycystic kidney disease: a case-control study. J Matern Fetal Neonatal Med 29:807-12
Gevers, Tom J G; Nevens, Frederik; Torres, Vicente E et al. (2016) Alkaline phosphatase predicts response in polycystic liver disease during somatostatin analogue therapy: a pooled analysis. Liver Int 36:595-602
Chebib, Fouad T; Torres, Vicente E (2016) Autosomal Dominant Polycystic Kidney Disease: Core Curriculum 2016. Am J Kidney Dis 67:792-810
Xu, Qingwen; Zhang, Yuxia; Wei, Qing et al. (2016) Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat Commun 7:10777

Showing the most recent 10 out of 117 publications