The goal of the Systems Biology Facility Core is to bring together the wide array of advanced technologies available to CEHS researchers and provide the resources to assist investigators in the design and implementation of new studies to take maximal advantage of these powerful tools. The previous Biomarkers Facility Core has facilitated access to a wide array of the modern 'omics'technologies. The University has continued to support these efforts and has committed extensive resources to insuring that state-of-the-art instrumentation is available in areas such as genomics, proteomics and metabolomics. These high-throughput methods have been extensively used by CEHS investigators to generate and test new hypotheses in the areas of environmental exposure and toxicology. In order to provide the most efficient access to the expanded capabilities at UNC and integrate new resources in bioinformatics, the Biomarkers Facility Core is being upgraded to the Systems Biology Facility Core (SBFC) which will be closely integrated with the Biostatistics and Bioinformatics Facility Core and the Integrated Health Sciences Facility Core. The SBFC is comprised of the six existing core facilities listed in Table 1. Support from CEHS gives our investigators priority access to these capabilities for their research in the form of reduced rates for services and support for pilot projects. Table 1. Core Facilities within the Systems Biology Facility Core. Sub-Core Facility Genomics Core DNA Damage Biomarkers Mass Spectrometry Proteomics Core Metabolomics Anatomic Pathology Core A systems biology investigation can generate a staggering amount of data. To address the need to analyze and integrate these data, the SBFC will work with the BBFC to develop the Computational Biology Resource (CBR). This will be comprised of individuals working with the BBFC who will have direct expertise in the high level analysis of multiple omics datasets. The individual sub-core facilities will do the initial processing of the raw data, typically using the software provided with the specific instrumentation. These may generate data such as lists of perturbed genes, proteins or metabolites, but transforming these datasets into testable biological hypotheses requires a tremendous amount of manual intervention. By using the computational modeling tools of systems biology, a more automated, objective means of generating high level biological knowledge is enabled. Computational biology tools work with massive databases of genetic and protein interactions along with metabolic pathways to uncover new relationships between genes and their downstream products. The CBR will provide advanced biostatistics analyses to identify the most critical alterations in the data, but will also integrate the data to generate biological pathways and networks. By applying the tools of the individual sub-core facilities and utilizing the Computational Biology Resource, CEHS investigators will be able to develop a systems level understanding of problems related to environmental exposures and toxicology leading to new hypotheses on how these risk factors can be mitigated to improve human health. A long-term goal of the CBR is to be able to apply similar approaches to the data generated in human studies conducted in the Interdisciplinary Health Sciences Facility Core. New investigators are easily overwhelmed by the rapidly advancing technologies in the systems biology world. To facilitate the translation of important biological questions into feasible systems biology research projects, the Systems Biology Research Network (SBRN) is being developed. The SBRN will provide a single point of contact to direct new investigators on how to initiate new projects and guide in the progression of existing projects toward the best resources. The director of the SBFC will serve as the head of the SBRN and will work closely with the Research Navigator to optimize the applications of systems biology. A biweekly seminar/journal club will be developed focusing on various techniques and applications to provide the non-expert with a forum to gain a better understanding of systems biology.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Center Core Grants (P30)
Project #
Application #
Study Section
Environmental Health Sciences Review Committee (EHS)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Rummo, Pasquale E; Albrecht, Sandra S; Gordon-Larsen, Penny (2015) Field validation of food outlet databases: the Latino food environment in North Carolina, USA. Public Health Nutr 18:977-82
Edwards, Sharon E; Maxson, Pamela; Miranda, Marie Lynn et al. (2015) Cadmium levels in a North Carolina cohort: Identifying risk factors for elevated levels during pregnancy. J Expo Sci Environ Epidemiol 25:427-32
Angelon-Gaetz, K A; Richardson, D B; Lipton, D M et al. (2015) The effects of building-related factors on classroom relative humidity among North Carolina schools participating in the 'Free to Breathe, Free to Teach' study. Indoor Air 25:620-30
Smith, Genee S; Schoenbach, Victor J; Richardson, David B et al. (2014) Particulate air pollution and susceptibility to the development of pulmonary tuberculosis disease in North Carolina: an ecological study. Int J Environ Health Res 24:103-12
Richardson, Andrea S; Meyer, Katie A; Howard, Annie Green et al. (2014) Neighborhood socioeconomic status and food environment: a 20-year longitudinal latent class analysis among CARDIA participants. Health Place 30:145-53
Fry, Rebecca C; Rager, Julia E; Bauer, Rebecca et al. (2014) Air toxics and epigenetic effects: ozone altered microRNAs in the sputum of human subjects. Am J Physiol Lung Cell Mol Physiol 306:L1129-37
Wen, Wanqing; Zheng, Wei; Okada, Yukinori et al. (2014) Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum Mol Genet 23:5492-504
Stingone, Jeanette A; Luben, Thomas J; Daniels, Julie L et al. (2014) Maternal exposure to criteria air pollutants and congenital heart defects in offspring: results from the national birth defects prevention study. Environ Health Perspect 122:863-72
Bradshaw, Patrick T; Ibrahim, Joseph G; Khankari, Nikhil et al. (2014) Post-diagnosis physical activity and survival after breast cancer diagnosis: the Long Island Breast Cancer Study. Breast Cancer Res Treat 145:735-42
Rager, Julia E; Bailey, Kathryn A; Smeester, Lisa et al. (2014) Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ Mol Mutagen 55:196-208

Showing the most recent 10 out of 716 publications