The functions of this Module have evolved over the years in response to changing technology and changing needs. At the beginning of the current cycle the 'molecular biology'component of the Module was very active, notably the Module's sequencing service. However, since sequencing is now largely outsourced and the research of our group increasingly emphasizes protein biochemistry, the functions of our Module now emphasize this activity, while maintaining some molecular biology support services. The major functions of the Module are twofold: (1) to provide access to and training in the use of shared-use instruments for biochemical and molecular analyses that are well maintained, and (2) to provide skilled technical support to facilitate access to the school's core research resources. The benefit to users of the first function include not only the consistent readiness of equipment, but also the savings in space, in training time, and in expense by avoiding unnecessary equipment duplication. Regarding the second Module function, facilitating access to institutional resources by our Core Grant was a strategic decision of the Core Advisory Committee during the current cycle (as indicated in the Overview section). This was seen as a way to increase innovation in our labs by making available state-of-the-art research instruments. It also effectively leverages our Core resources and reduces expenditures by Core investigators who want to use fee-for-service institutional cores. Additionally, it has the intangible but important benefit of integrating eye/vision scientists with the broader scientific community on campus. The Biochemistry-Molecular Biology Module specifically increases access to three MCW core resources: the Innovation Center (Mass Spectrometry Facility), the Biochemistry facility for Surface Plasmon Resonance (BIAcore 3000) analysis, and the Free Radical Research Center.

National Institute of Health (NIH)
National Eye Institute (NEI)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZEY1-VSN)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical College of Wisconsin
United States
Zip Code
Reid, Christopher A; Nettesheim, Emily R; Connor, Thomas B et al. (2018) Development of an inducible anti-VEGF rAAV gene therapy strategy for the treatment of wet AMD. Sci Rep 8:11763
Zhang, Hanmeng; Mu, Lianwei; Wang, Dandan et al. (2018) Uncovering a critical period of synaptic imbalance during postnatal development of the rat visual cortex: role of brain-derived neurotrophic factor. J Physiol 596:4511-4536
Lewis, Tylor R; Kundinger, Sean R; Link, Brian A et al. (2018) Kif17 phosphorylation regulates photoreceptor outer segment turnover. BMC Cell Biol 19:25
Huckenpahler, Alison; Wilk, Melissa; Link, Brian et al. (2018) Repeatability and Reproducibility of In Vivo Cone Density Measurements in the Adult Zebrafish Retina. Adv Exp Med Biol 1074:151-156
Lewis, Tylor R; Zareba, Mariusz; Link, Brian A et al. (2018) Cone myoid elongation involves unidirectional microtubule movement mediated by dynein-1. Mol Biol Cell 29:180-190
Lee, Daniel J; Woertz, Erica N; Visotcky, Alexis et al. (2018) The Henle Fiber Layer in Albinism: Comparison to Normal and Relationship to Outer Nuclear Layer Thickness and Foveal Cone Density. Invest Ophthalmol Vis Sci 59:5336-5348
Linderman, Rachel E; Muthiah, Manickam N; Omoba, Sarah B et al. (2018) Variability of Foveal Avascular Zone Metrics Derived From Optical Coherence Tomography Angiography Images. Transl Vis Sci Technol 7:20
Vogel, Ryan N; Strampe, Margaret; Fagbemi, Oladipo E et al. (2018) Foveal Development in Infants Treated with Bevacizumab or Laser Photocoagulation for Retinopathy of Prematurity. Ophthalmology 125:444-452
Warren, Clinton C; Young, Jonathon B; Goldberg, Mara R et al. (2018) Findings in Persistent Retinopathy of Prematurity. Ophthalmic Surg Lasers Imaging Retina 49:497-503
Strampe, Margaret R; Huckenpahler, Alison L; Higgins, Brian P et al. (2018) Intraobserver Repeatability and Interobserver Reproducibility of Ellipsoid Zone Measurements in Retinitis Pigmentosa. Transl Vis Sci Technol 7:13

Showing the most recent 10 out of 517 publications