The broad objective of this Core Vision Research Grant application is to facilitate study of the structure, development and function of the visual system in health and in blinding diseases, with the aim of preventing, mitigating or curing such diseases through the application of the most sophisticated available techniques, including the methods used in molecular biology and molecular genetics. Five support and service modules will help achieve the broad objective, as follows: I. Imaging Support Module (computer-aided image analysis;production of graphics for data analysis, presentation and publication, including poster printing); II. Molecular Biology and Genetic Analysis Service Module (PCR and Southern blot genotyping of transgenic animals and DMA sequencing); III. Confocal and Digital Microscopy Support Module (digital data acquisition using confocal microscopy and optical brightfield, darkfield, phase contrast or fluorescence microscopy); IV. Computer/IT Support Module (assistance in computer and information technology hardware and software selection, installation, instruction in use, maintenance and minor repairs, networking, and programming for custom research needs); V. Electrical and Machine Shop Service Module (design, manufacture, maintenance and repair of specialized research instruments and devices). This application is a competing renewal of a Core Vision Research Grant submitted by the Principal Investigator and 32 other funded vision scientists. Twenty are NEI-funded with 23 separate research projects (R01, K08 and K23), 5 are funded by other NEI mechanisms, one is NIH- but not NEI-funded, and 8 others are funded by private, non-NIH sources. Of the latter 8, two are newly recruited vision scientists who plan to submit new NEI R01 grant applications, and two others are more senior scientists who plan to resubmit productive R01 applications in the near future. Overall, Core investigators are involved in 38 different, active research projects. The Core Vision Research Grant has been highly successful in enhancing the productivity of vision research and facilitating collaborative studies on the visual system at UCSF.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
3P30EY002162-35S2
Application #
8735219
Study Section
Special Emphasis Panel (ZEY1-VSN (04))
Program Officer
Liberman, Ellen S
Project Start
1997-03-01
Project End
2014-06-30
Budget Start
2012-03-01
Budget End
2014-06-30
Support Year
35
Fiscal Year
2013
Total Cost
$408,448
Indirect Cost
$148,290
Name
University of California San Francisco
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
LaVail, Matthew M; Yasumura, Douglas; Matthes, Michael T et al. (2016) Gene Therapy for MERTK-Associated Retinal Degenerations. Adv Exp Med Biol 854:487-93
Lamy, Ricardo; Chan, Elliot; Good, Samuel D et al. (2016) Riboflavin and ultraviolet A as adjuvant treatment against Acanthamoeba cysts. Clin Exp Ophthalmol 44:181-7
Rooney, Gemma E; Goodwin, Alice F; Depeille, Philippe et al. (2016) Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. J Neurosci 36:142-52
Alavi, Marcel V; Mao, Mao; Pawlikowski, Bradley T et al. (2016) Col4a1 mutations cause progressive retinal neovascular defects and retinopathy. Sci Rep 6:18602
Flores, Alyssa M; Casey, Scott D; Felix, Christian M et al. (2016) Small-molecule CFTR activators increase tear secretion and prevent experimental dry eye disease. FASEB J 30:1789-97
Ou, Yvonne; Jo, Rebecca E; Ullian, Erik M et al. (2016) Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension. J Neurosci 36:9240-52
Delwig, Anton; Larsen, DeLaine D; Yasumura, Douglas et al. (2016) Retinofugal Projections from Melanopsin-Expressing Retinal Ganglion Cells Revealed by Intraocular Injections of Cre-Dependent Virus. PLoS One 11:e0149501
Chou, Jonathan; Chan, Matilda F; Werb, Zena (2016) Metalloproteinases: a Functional Pathway for Myeloid Cells. Microbiol Spectr 4:
Della Santina, Luca; Ou, Yvonne (2016) Who's lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp Eye Res :
McNamara, Nancy A; Ge, Shaokui; Lee, Salena M et al. (2016) Reduced Levels of Tear Lacritin Are Associated With Corneal Neuropathy in Patients With the Ocular Component of Sjögren's Syndrome. Invest Ophthalmol Vis Sci 57:5237-5243

Showing the most recent 10 out of 453 publications