The broad objective of this NEI Center Core Grant for Vision Research application is to facilitate study of the structure, development and function of the visual system in health and in blinding diseases, with the aim of preventing, mitigating or curing such diseases, or the restoration of lost vision, through the application of the most sophisticated available techniques. Four resource and service Cores will help achieve the broad objective, as follows: I. Imaging Resource Core (morphometric analysis;computer-aided image analysis;production of graphics for data analysis, presentation and publication);II. Morphology Resource Core (ocular imaging, including slit lamp photography, fundus examination and fluorescein angiography with Micron III, and optical coherence tomography;paraffin and plastic embedding, sectioning and staining;cryosectioning for immunohistochemistry;light microscopy and photomicrography, including brightfield, darkfield, phase contrast, DIC and florescence;electron microscopy;and confocal microscopy); III. Computer/IT Resource Core (programming for custom research needs;assistance in computer and information technology hardware and software selection, installation, instruction in use, maintenance and minor repairs);IV. Machine Shop Service Core (design, manufacture, maintenance and repair of specialized research instruments and devices using state of the art computer numerically controlled machines). This is a resubmission application of a NEI Center Core Grant for Vision Research competing renewal submitted by the Principal Investigator and 13 other vision scientists who hold 17 active NEI ROI research grants. In addition, the UCSF vision research community supported by the NEI Vision Core Grant comprises 6 NEI-supported scientists with grant mechanisms other than ROI, 2 with other NIH funding, 1 with FDA R01 funding and 7 with private funding. There are 30 Core Investigators with 33 active research programs, overall, each using at least one Core at a moderate or extensive level. Using traditional and innovative approaches, this Core Vision Research Grant has been highly successful and instrumental in enhancing the productivity and impact of vision research, attracting scientists to vision research and facilitating collaborative studies on the visual syste at UCSF.

Public Health Relevance

Many blinding disorders affect millions of people of all ages. This Center Core Grant for Vision Research application is to facilitate studies of the structure, development and function of the visual system in health and disease, with the aim of preventing, mitigating or curing such disorders, or the restoration of lost vision, through the application of the most sophisticated available techniques.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
2P30EY002162-36A1
Application #
8744491
Study Section
Special Emphasis Panel (ZEY1)
Program Officer
Liberman, Ellen S
Project Start
1997-03-01
Project End
2019-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
36
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
City
San Francisco
State
CA
Country
United States
Zip Code
94143
LaVail, Matthew M; Yasumura, Douglas; Matthes, Michael T et al. (2016) Gene Therapy for MERTK-Associated Retinal Degenerations. Adv Exp Med Biol 854:487-93
Lamy, Ricardo; Chan, Elliot; Good, Samuel D et al. (2016) Riboflavin and ultraviolet A as adjuvant treatment against Acanthamoeba cysts. Clin Exp Ophthalmol 44:181-7
Rooney, Gemma E; Goodwin, Alice F; Depeille, Philippe et al. (2016) Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. J Neurosci 36:142-52
Alavi, Marcel V; Mao, Mao; Pawlikowski, Bradley T et al. (2016) Col4a1 mutations cause progressive retinal neovascular defects and retinopathy. Sci Rep 6:18602
Flores, Alyssa M; Casey, Scott D; Felix, Christian M et al. (2016) Small-molecule CFTR activators increase tear secretion and prevent experimental dry eye disease. FASEB J 30:1789-97
Ou, Yvonne; Jo, Rebecca E; Ullian, Erik M et al. (2016) Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension. J Neurosci 36:9240-52
Delwig, Anton; Larsen, DeLaine D; Yasumura, Douglas et al. (2016) Retinofugal Projections from Melanopsin-Expressing Retinal Ganglion Cells Revealed by Intraocular Injections of Cre-Dependent Virus. PLoS One 11:e0149501
Chou, Jonathan; Chan, Matilda F; Werb, Zena (2016) Metalloproteinases: a Functional Pathway for Myeloid Cells. Microbiol Spectr 4:
Della Santina, Luca; Ou, Yvonne (2016) Who's lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp Eye Res :
McNamara, Nancy A; Ge, Shaokui; Lee, Salena M et al. (2016) Reduced Levels of Tear Lacritin Are Associated With Corneal Neuropathy in Patients With the Ocular Component of Sjögren's Syndrome. Invest Ophthalmol Vis Sci 57:5237-5243

Showing the most recent 10 out of 453 publications